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Abstract

In this Master Project, two tests statistics for functional data are

presented. A review of Hilbert space theory is given and fundamentals

of probability in abstract spaces are presented. Then basic aspects

of Functional Data Analysis are exposed, followed by some notions

from inverse problems. Eventually a test for the mean of random

curves, and for the Functional Linear Model with scalar responses are

presented, with an application to DNA shape analysis.





I'm not going to do my maths homework. Look at these unsolved problems.

Here's a number in mortal combat with another. One of them is going to get

subtracted. But why? What will be left of him? If I answered these, it would kill

the suspense. It would resolve the con�ict and turn intriguing possibilities into

boring old facts.

�� Calvin & Hobbes ��





Introduction

Whereas the notions of Statistics in Euclidean space are quite straightforward
and accessible, the �simple� problem of drawing inferences for the mean of
random variables in in�nite-dimensional spaces to necessitates further math-
ematical background.

This Master Project report is the �nal milestone of a Master's study in
Mathematics � and also a �rst step in the PhD studies of the author. It has
the purpose of introducing the necessary tools to understand two asymptotic
tests for Functional Data, namely for:

1. The mean of i.i.d. L2 ([0, 1])-valued random variables,

2. The Functional Linear Model with Scalar Responses.

The basic idea is to derive a test inspired by the multivariate test of the
mean for i.i.d. random vectors,

Mn(p)−1/2

(
1√
n

n∑
k=1

(Xk −m0)

)
,

where m0 is the mean vector under H0 andMn(p) is the empirical covariance
matrix. The problem that occurs in the in�nite dimensional setting is that
the empirical covariance operator Γn is of �nite rank, and moreover, the true
covariance operator Γ is trace-class. Therefore, the direct inversion �Γ

−1/2
n �

makes no sense and an ill-posed inverse problem naturally arises. The use of
regularization techniques is then necessary.

We �rst need to understand in�nite dimensional spaces, especially Hilbert
spaces. We will thus begin this report with a review of some Hilbert space
theory in Section ??. First we will present some classical examples of Hilbert
spaces, such as the `2 or L

2 spaces, and we will talk about orthogonality and
separability in Hilbert spaces. Then we will introduce the notion of a bounded
linear operator, which is central to the study of Hilbert spaces. The adjoint
of an operator, the notion of compact operator, and the spectral Theorem for
compact and self-adjoint operators will be then presented. Eventually, the
singular value decomposition Theorem for compact operators will be given.

Once Hilbert spaces have been seen, we will need to understand how to
put a handle on probability measures on such spaces. Especially, we need
to understand what a Gaussian random variable in a Hilbert space is. In
Section 2, we will �rst introduce the concepts of measure theory that are
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useful for the study of random processes, and provide a Theorem about the
existence of processes, due to Kolmogorov. We will then introduce Gaussian
random vectors and some of their properties, before presenting Gaussian
Processes. This way, we will see the analogies between the �nite and in�-
nite dimensional setup. Afterwards, basic notions of probabilities in Banach
spaces will be presented, and selected limit Theorems for sequences of Banach
space-valued random variables will also be given. We will �nally conclude
with some remarks about the de�nition of Gaussian processes.

Next, we will give a review of basic aspects of Functional Data Analy-
sis in Section 3. This section will be central to this report, because it will
introduce the techniques that allow to transform raw discrete data into func-
tional datum. First the main ideas for turning discrete data into a functional
datum will be introduced, by the mean of basis functions, and the least
squares representations will be presented. Then we will introduce the no-
tion of roughness penalization, which is of particular importance due to the
in�nite dimensional nature of the data we are dealing with. A short presen-
tation of registration of functional data will follow, before an introduction to
functional principal component analysis (PCA) and regularized PCA. Even-
tually, we will present the Functional Llinear Model, which is the in�nite
dimensional analogue of a regression model.

At that point, we would have seen some basic Hilbert space theory, fun-
damentals of probability in abstract spaces, and also an introduction to func-
tional data. Section 4 will present the last preparation that will be needed
in order to understand tests for functional data. We will begin by introduc-
ing the notion of an ill-posed inverse problem, and will present the simplest
inverse problems: the Fredholm equations of the �rst kind. We will then
expose two methods for resolving such inverse problems: Spectral Trunca-
tion, which is based on the SVD decomposition of compact operators, and
Tikhonov regularization, which is the in�nite dimensional analogue to Ridge
regression. We will then end this section by presenting a generalization of
Tikhonov reguralization.

Thereafter, we will turn our attention to statistical inference for functional
data. In Section 5, we will �rst start by giving a review of Mas (2007), an
article presents a test statistic for the mean of sample curves. We will see
that an inverse problem occurs when we try to �free� the centered sample
mean X −m0 from dependencies on the unknown distribution of the data,
and that Tikhonov regularization is necessary. Then, we will present a paper
of Cardot et al. (2003), which gives a test for the functional linear model
with scalar responses. Again, an inverse problem will naturally arise, and
Spectral truncation will be used.

Eventually, we will end this report by giving an application to DNA Shape
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Analysis in Section 6. We will test to see if the mean of some DNA minicircles
is indeed a circle.
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1
A Review of Some Hilbert Space Theory

In order to be able to do statistics in Hilbert spaces, we are going to give a
review of some Hilbert space theory in this section. We are �rst going to give
some classical examples of Hilbert spaces, such as the `2 or L2 spaces, and
we will talk about orthogonality and separability in Hilbert spaces. Then we
will introduce the notion of a bounded linear operator, which is central to the
study of Hilbert spaces. The adjoint of an operator, the notion of compact
operator, and the spectral Theorem for compact and self-adjoint operators
will be then presented. Eventually, the singular value decomposition Theo-
rem for compact operators will be given.

1.1 Scalar Products, Norms and In�nite Dimensional

Vector Spaces

Hilbert spaces are a special kind of normed vector space, so let us begin with
the de�nition of a norm on a vector space:

De�nition 1.1.1. Let V be a vector space over F = R or C. A norm on V
is a function ‖ · ‖ : V → R+ that satis�es:

1. ‖v‖ ≥ 0 for all v ∈ V , with equality if, and only if, v = 0,

2. ‖µv‖ = |µ|‖v‖, for all v ∈ V, µ ∈ F.

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V . ¸

The standard example of a vector space is the Euclidean space Rn, with
the norm

‖(x1, . . . , xn)‖ =
√
x2

1 + · · ·+ x2
n.

Having a norm on a vector space is nice, because it gives it a topology.
However, there are some spaces that have a little more than a norm:



1 A REVIEW OF SOME HILBERT SPACE THEORY

De�nition 1.1.2. Let V be a vector space over F = R or C. A scalar product
(or inner product) on V is a function 〈·, ·〉 : V × V → F that satis�es, for all
v, w, z ∈ V and µ ∈ C:

1. 〈v, v〉 ≥ 0, with equality if, and only if, v = 0,

2. 〈µv + w, z〉 = µ〈v, z〉+ 〈w, z〉,

3. 〈v, µw + z〉 = µ〈v, w〉+ 〈v, z〉

4. 〈v, w〉 = 〈w, v〉,

where µ is the complex conjugate of µ. ¸

A scalar product provides much more structure than a norm:

Proposition 1.1.3. Let V be a vector space with a scalar product. Then

‖v‖ =
√
〈v, v〉, v ∈ V

de�nes a norm on V . Furthermore, we have the famous Cauchy-Schwarz
inequality:

(1.1) |〈v, w〉| ≤ ‖v‖ · ‖w‖,

with equality if, and only if v and w are collinear.

Proof. See Axler (1997) for instance.

De�nition 1.1.4. A Hilbert Space H is a vector-space (real or complex) with
a scalar product 〈·, ·〉 which makes it a complete space. In other terms, if we
de�ne ‖v‖ =

√
〈v, v〉 to be the norm of v ∈ H, then H has the property that

any Cauchy sequence (xn)∞n=1 ⊂ H converges to an x ∈ H, in the topology
induced by the norm. ¸

A Hilbert Space is hence a vector space, together with a topological struc-
ture (given by the norm). In fact, it has a geometrical structure thanks to
the scalar product, which allows to de�ne the angle θ ∈ [0, π] between two
elements v, w ∈ H by the relation

cos θ =
〈v, w〉
‖v‖‖w‖

.

When we talk about Hilbert Spaces, we often assume implicitly that they are
in�nite dimensional vector spaces. Thus things get a lot more complicated
than with �nite dimensional vector spaces, and that is the reason why we
do not study just abstract in�nite dimensional vector spaces, but Hilbert
Spaces, which allow us the use of analysis techniques. Here is a classical
example of a Hilbert space:
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1.1 Scalar Products, Norms and In�nite Dimensional Vector Spaces

Example 1.1.5 (Theorem). Let CN = {x = (x1, x2, . . .) : xj ∈ C, ∀j = 1, 2, . . .} ,
and de�ne the space

`2 =

{
x ∈ CN :

∞∑
n=1

|xn|2 <∞

}
.

Then with the scalar product 〈x, y〉 =
∑∞

n=1 xnyn and the coordinate-wise
sum and multiplication by scalars, `2 is a Hilbert Space.

Indeed, the only non-trivial thing to prove is that it is a complete space.

Proof. Let (xk)∞k=1 ⊂ `2 be a Cauchy sequence, and let us write the `2-norm
by ‖v‖2 =

√
〈v, v〉. Notice that for all k = 1, 2, . . ., (xkn)∞n=1 is a sequence of

complex numbers. For simplicity of notation, we shall write (xk)k instead of
(xk)∞k=1 from now on.

The idea is to look at the sequence formed by the nth coordinate of each
xk to �nd a candidate a = (a1, a2, . . .) for the limit of (xk)k, then show that
a ∈ `2 and eventually that it is indeed the desired limit.

Fix n ≥ 1, and look at (xkn)k ⊂ C. We claim that it is a Cauchy sequence
in C. Indeed, �x ε > 0. Because (xk)k is Cauchy in `2, then there is a k0 > 0
such that for all j0, j1 > k0,

∞∑
n=1

|xj0n − xj1n |2 = ‖xj0 − xj1‖2
2 < ε2,

and thus |xj0n − xj1n | < ε, ∀j0, j1 > k0. Hence (xkn)k is Cauchy in C, and
because the latter is a complete metric space, the sequence converges to an
an ∈ C. This way, we can construct the sequence a = (a1, a2, . . .).

Let us show that a ∈ `2, and that limk→∞ ‖xk − a‖2 = 0. This will
complete our example. To show that a ∈ `2, it is enough to show that
xk − a ∈ `2, because a = xk − (xk − a) ∈ `2. Let N > 0, �x ε > 0. There
exists a k0 > 0 such that for all j0, j1 > k0,

N∑
n=1

|xj0n − xj1n |2 ≤
∞∑
n=1

|xj0n − xj1n |2 < ε2.

Letting j1 →∞ on the left-hand side yields then

N∑
n=1

|xj0n − an|2 < ε2.

Because the left hand equation is true for all N > 0, we can let N → ∞ to
get ‖xj0 − a‖2 < ε, and thus we have showed two things: xj0 − a ∈ `2 and
also, for all ε > 0, ∃N > 0 such that ∀j0 > N, ‖xj0 − a‖2 < ε.
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1 A REVIEW OF SOME HILBERT SPACE THEORY

And here is an example of a space which is not a Hilbert Space:

Example 1.1.6. The space C([0, 1]) of continuous complex-valued function
on the compact interval [0, 1] (the unit interval) with the scalar product

〈f, g〉 =
∫ 1

0
f(t)g(t)dt is not a Hilbert Space. For instance, the sequence of

continuous functions (fn)n de�ned by

(1.2) fn(t) =


0 if 0 ≤ t < 0.5− 1/(2n)

n[t− (0.5− 1/(2n))] if 0.5− 1/(2n) ≤ t ≤ 0.5 + 1/(2n)

1 if 0.5 + 1/(2n) < t ≤ 1

is a Cauchy sequence, but it doesn't converge in C([0, 1]). J

So the space of continuous functions on the unit interval is not complete
with the above de�ned scalar product. One could ask if a bigger space, such
as the Riemann square-integrable functions on [0, 1], is complete under the
same scalar product. Well, the answer is no, and here is an example of a
non-convergent Cauchy sequence given to me by a collegue (Peter Jossen):

Example 1.1.7. The space of Riemann square-integrable functions

R([0, 1]) =

{
f : [0, 1]→ C

 R

∫ 1

0

|f(t)|2dt <∞
}
,

where R

∫ 1

0
denotes the integral in the Riemann sense, with the scalar product

de�ned in example 1.1.6 is not complete, and hence it's not a Hilbert Space.
Here is an example: let (an)n be an enumeration of the rational numbers
[1/3, 2/3] ∩Q, and de�ne the sequence of functions

fn(t) =

{
0 if |t− aj| < 10−j, for a j = 1, . . . , n;

1 otherwise.
n ≥ 1.

Figure 1.1 shows the graph of f1, f2 and f3 for a certain (an).

Assertion (fn) is a Cauchy sequence in R([0, 1]), but doesn't converge in
R([0, 1]).

Proof. The core idea is that if a function is Riemann integrable, the Lebesgue
integral and the Riemann integral coincide. We will use the notation R

∫ 1

0
for

the Riemann integral, and
∫

for Lebesgue's integral. Notice that ∀t ∈
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1.1 Scalar Products, Norms and In�nite Dimensional Vector Spaces
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Figure 1.1: From top to bottom: the graphs of f1, f2 and f3, respectively, with

a1 = 1/3, a2 = 2/3 and a3 = 1/2. Notice that the interval of length
2 · 10−3 around t = 1/2 in which f3(t) has value zero.
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1 A REVIEW OF SOME HILBERT SPACE THEORY

[0, 1], 1 ≥ fn(t) ≥ fn+1(t) ≥ f(t), where f is the pointwise limit of fn,
explicitly

f(t) =

{
0 if |t− aj| < 10−j, for a j = 1, 2, . . . ;

1 otherwise.

We have by the dominated convergence Theorem that∫ 1

0

f(t)dt = lim
n→∞

∫ 1

0

fn(t)dt ≥ 1− lim
n

n∑
k=1

10−k =
8

9
.

Now suppose there exists an g ∈ R([0, 1]) that is the limit of (fn) in the sense
that

lim
n

R

∫ 1

0

(fn(t)− g(t))2dt = 0.

Then by the dominated convergence Theorem,
∫ 1

0
(f(t) − g(t))2dt = 0, and

hence f = g a.e. We a�rm that g|J = 0, where J is a dense subset of
[1/3, 2/3]. Indeed, if this is not true, then ∃x0 ∈ [1/3, 2/3] and δ > 0 such that
g(x) 6= 0, if |x−x0| < δ. But there is a rational number ak ∈ (x0− δ, x0 + δ),
hence f|(ak−10−k,ak+10−k) = 0. Thus there exists a interval J̃ with non-zero
measure such that g|J̃ 6= 0 and f|J̃ = 0, which leads to a contradiction.

So now we know that g has to be equal to 0 on a dense subset J of

[1/3, 2/3], and that g is Riemann-integrable. But then R

∫ 2
3
1
3

g(t)dt = 0, and

hence

R

∫ 1

0

g(t)dt ≤ 2

3
=

6

9
<

8

9
=

∫ 1

0

f(t)dt,

which is a contradiction! Therefore the space R([0, 1]) is not complete.

One needs to consider the larger space of Lebesgue-integrable function to
have a Hilbert-space:

Example 1.1.8. Let L2 ([0, 1],F), where F = R or C, be the space of func-
tions f : [0, 1]→ F which are Lebesgue integrable, and such that

∫ 1

0
|f(t)|2dt <

∞ in the Lebesgue sense. For f, g ∈ L2 ([0, 1],F), let 〈f, g〉 =
∫ 1

0
f(t)g(t)dt.

This almost de�nes a scalar product, except that we can have ‖f‖ = 0 with
f 6= 0. But if we quotient the space by the equivalence relation

f ∼ g if, and only if f 6= g only on a set of measure zero,

then the obtained space, which we will denote L2 ([0, 1],F), is a Hilbert space.
For a proof of this statement, you can see Debnath & Mikusi«ski (2005, p.76).
J
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Notation 1.1.9. We will use the shortened notation L2 ([0, 1]) = L2 ([0, 1],R)
and L2 ([0, 1]) = L2 ([0, 1],R) from now on.

1.2 Orthogonality and Separability in Hilbert Spaces

Having a scalar product allows us to introduce the notion of angle between
two elements, and more speci�cally, de�ne what two orthogonal elements are:

De�nition 1.2.1. Let H be a Hilbert space. Two elements x, y ∈ H are
said to be orthogonal if 〈x, y〉 = 0.

A family (xj)j∈J is called an orthogonal system if 〈xj, xk〉 = 0 whenever
j 6= k; j, k ∈ J . Furthermore, if ‖xj‖ = 1 for all j ∈ J , then (xj)j∈J is called
an orthonormal system.

If the index set J of an orthonormal system is �nite or countable, then
we will say that (xj)j∈J is an orthonormal sequence. ¸

The most canonical example of orthonormal sequence are the vectors
e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, . . . , 0, 1) ∈ Cn, with scalar
product 〈u, v〉 =

∑n
j=1 uj v̄j, where u, v ∈ Cn. Orthogonal vectors facilitate

computations: for instance, if (x1, . . . , xn) ⊂ H is an orthonormal system,
then

‖x1 + · · ·+ xn‖2 = ‖x1‖2 + · · ·+ ‖xn‖2.

Also, if v =
∑n

j=1 µjxj with µj ∈ C, then we can easily �nd the µj's through
the equality

(1.3) µj = 〈v, xj〉/‖xj‖2.

Consider now an in�nite dimensional Hilbert space H, and an orthonor-
mal sequence (ej)j∈N in H. We would like to know if any vector v ∈ H can
be expressed in terms of a linear combination of the ej's. If so, then �nding
the coe�cient would be easy, provided equation (1.3) can be generalized to
a series. The following proposition assures us that the series

∑∞
j=1〈x, ej〉ej

has a meaning when x ∈ H:

Proposition 1.2.2 (Bessel's inequality). For any orthonormal sequence (ej)j∈N
in a Hilbert space H, and for any x ∈ H,

∞∑
j=1

|〈x, ej〉|2 ≤ ‖x‖2.

Therefore, the limit
∑∞

j=1〈x, ej〉ej is convergent.

Proof. See Young (1988, p.34).
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1 A REVIEW OF SOME HILBERT SPACE THEORY

So, we would really like to be able to write

x =
∞∑
j=1

〈x, ej〉ej, ∀x ∈ H.

Unfortunately, this need not be the case, because if H is �too big�, then we
won't be able to �ll the whole space with our orthonormal sequence. Here is
an example of such a Hilbert space:

Example 1.2.3 (A non-separable Hilbert space). Let

X =

f : R→ R
 Ef = f−1(R− {0}) is countable and

∑
x∈Ef

(f(x))2 <∞

 ,

and for f, g ∈ X, let 〈f, g〉 =
∑

x∈R f(x)g(x) be the scalar product. Notice
that only a countable number of summands are non-zero, thus the sum is
actually a countable sum, and verifying that it de�nes indeed a scalar product
is done in the same way as for `2. This space is a Hilbert space, and although
it looks like the `2 space, it is signi�cantly di�erent from it, as we will see
now.

For any orthonormal sequence (en)n∈N in X, let E = ∪n∈Ne
−1
n (R−{0}) be

the subset of R where at least one of the en is non-zero. Then E is countable
(being a countable union of countable sets), and we can pick an x̄ ∈ R− E.
De�ne f ∈ X by f(x̄) = 1 and f(x) = 0 if x 6= x̄. Then f cannot be
expressed as a linear combination of the en's. J

This motivates the following de�nition:

De�nition 1.2.4. Let H be a Hilbert space. An orthonormal sequence
(en)n∈N in H is complete if any x ∈ H can be written as

x =
∞∑
j=1

〈x, ej〉ej.

A Hilbert space that contains a complete orthonormal sequence is called
separable. In the sequel, we will sometimes use the term orthonormal basis
instead of complete orthonormal sequence. ¸

A separable Hilbert space is thus a space that can be in�nite dimensional,
but not �too big� (it must be of countable dimension in some sense), and
that contains a (countable) sequence of mutually orthonormal vectors, with
the property that the closure of their span is the entire Hilbert space. The
following formula is important in this setting:
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Proposition 1.2.5 (Parseval's formula). Let H be a separable Hilbert space,
and (en) be an orthonormal basis. Then

(1.4) ‖x‖2 =
∞∑
n=1

|〈x, en〉|2

Proof. See Debnath & Mikusi«ski (2005, p.115)

So it seems that separable Hilbert spaces look like sequence spaces. We
will now see that this is essentially all there is.

De�nition 1.2.6. A linear bijection U : H → K between two Hilbert spaces
is called a unitary operator if it preserves the scalar product, that is,

〈x, y〉H = 〈Ux, Uy〉K , ∀x, y ∈ H.

The Hilbert spaces H,K are called isomorphic if there is a unitary operator
from H to K. ¸

The following result is a classi�cation of the separable Hilbert spaces (Deb-
nath & Mikusi«ski 2005, p.121); recall that in our notation, F = R or C.

Theorem 1.2.7 (Classi�cation of separable Hilbert spaces). Let H be a
separable Hilbert space. Then if H is �nite dimensional, it is isomorphic to
Fn, where n = dimH, otherwise it is isomorphic to `2 (with values in F).

1.3 Bounded Linear Operators

Let us recall the de�nition of a linear operator:

De�nition 1.3.1. A linear operator between two vector spaces E,F over
the �eld F is a mapping T : E → F such that

(1.5) T (µv + λw) = µT (v) + λT (w), for all µ, λ ∈ F and v, w ∈ E.

A linear operator on E is a linear operator from E to E. ¸

When the vector spaces E,F are �nite dimensional, then the study of lin-
ear operators is done through matrix representations, and the theory essen-
tially becomes linear algebra. The �nite dimensionality of the spaces enables
a great deal of intuition and the theory is pretty well behaved. However,
letting the spaces E and F be of in�nite dimension complicates the theory
of linear operators signi�cantly. We thus restrain ourselves to the study of
continuous linear operators. In order to talk of continuity, we need to have
a notion of topology, which will naturally arise through the introduction of
a suitable norm on our vector spaces E and F .
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De�nition 1.3.2. A Banach Space B is a vector space together with a norm
‖ · ‖ : B → R+, under which it is complete. ¸

The notion of Banach Space extends the notion of Hilbert Space. Any
Hilbert Space is a Banach space, but the converse is not true. In Hilbert
spaces, the scalar product gives a notion of geometry and makes life easier.
For example, one can talk of orthonormal bases and orthogonal projections
in Hilbert space, and these do not exist in Banach spaces.

Notation 1.3.3. From now on, H,H ′ will denote Hilbert spaces, and B,B′

will denote Banach spaces.

We will from now on concentrate on continuous linear operators. This no-
tion can be generalized to metric spaces (in which continuity has a meaning)
but we will not need that kind of generality in this report.

Because of linearity, the continuity condition has the following character-
ization:

Theorem 1.3.4 (Characterization of continuous linear operators). Let L be
a linear operator from E to F , which are both Banach spaces. Then the
following properties are equivalent:

1. L is continuous,

2. L is continuous at 0 ∈ E,

3. There exists a constant M > 0 such that ‖Lx‖F ≤ M‖x‖E for all
x ∈ E.

A linear operator satisfying 3. is said to be bounded.

Proof. See Rudin (1991, p.24).

Hence for linear operators, boundedness is equivalent to continuity. From
now on, we shall use the term bounded operator when talking of a continuous
linear operator.

The space of bounded operators L(E,F ) is itself a linear space. When
E = F , we shall write L(E) = L(E,E) for simplicity. It happens that we
can de�ne a norm on the space of bounded operators:

Proposition 1.3.5 (De�nition). Let E,F be Banach spaces (over the �eld
R), and L(E,F ) = {L : E → F : L is a bounded operator}. Then with the
operations

(1.6) (λL+ µS)x = λ(Lx) + µ(Sx), ∀µ, λ ∈ R, ∀x ∈ E,
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L(E,F ) is a vector space, and

(1.7) ‖L‖ = sup {‖Lx‖ : x ∈ E, ‖x‖ ≤ 1}

de�nes a norm on it, called the operator norm. Furthermore, if G is another
Banach space, then for any L ∈ L(E,F ) and S ∈ L(F,G) we have

(1.8) ‖SL‖ ≤ ‖S‖‖L‖

and S ◦ L ∈ L(E,G).

Proof. The only non-trivial thing to show is that (1.7) de�nes a norm on
L(E,F ) and that (1.8) holds. Take L, S ∈ L(E,F ). Then

‖L+ S‖ = sup {‖Lx+ Sx‖ : x ∈ E, ‖x‖ ≤ 1}
≤ sup {‖Lx‖+ ‖Sx‖ : x ∈ E, ‖x‖ ≤ 1}
≤ sup {‖Lx‖ : x ∈ E, ‖x‖ ≤ 1}

+ sup {‖Sx‖ : x ∈ E, ‖x‖ ≤ 1}
= ‖L‖+ ‖S‖.

(1.9)

And of course, if λ ∈ R, then

‖λL‖ = sup {‖λLx‖ : x ∈ E, ‖x‖ ≤ 1}
= |λ| sup {‖Lx‖ : x ∈ E, ‖x‖ ≤ 1}
= |λ|‖L‖.

Now for (1.8), notice that for any x 6= 0, x/‖x‖ has norm 1 and thus

1

‖x‖
‖L(x)‖ =

∥∥∥∥L( x

‖x‖

)∥∥∥∥ ≤ ‖L‖,
hence ‖Lx‖ ≤ ‖L‖‖x‖ for all x ∈ E. Therefore ‖SLx‖ = ‖S(Lx)‖ ≤
‖S‖‖Lx‖ ≤ ‖S‖‖L‖‖x‖, and (1.8) is established.

Just like in linear algebra, some important subsets have to be de�ned:
the kernel of L : E → F is the subspace ker(L) = {x ∈ E : Lx = 0} of E,
and the range or image of L is the subspace Im(L) = {Lx : x ∈ E} of F .
Also, we will say that a linear operator (not necessarily bounded) L : E → F
is invertible if there is a linear operator S : F → E such that SL = IdE and
LS = IdF , where IdE is the identity on E,
Now let us give a few example of linear operators:

Examples 1.3.6. Here are some classical examples of bounded operators:
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The identity operator Let B be a Banach space. Then the identity oper-
ator IdB : B → B is a bounded operator with norm ‖IdB‖ = 1.

A shift operator Consider the operator S : `2 → `2 de�ned by

S(x1, x2, . . .) = (0, x1, x2, . . .)

(see example 1.1.5). It is a linear operator, and furthermore, ‖Sx‖2 =
‖x‖2 for all x ∈ `2. Therefore ‖S‖ = 1, and S is a bounded operator
on `2. Notice that ker(S) = {0}, but that S isn't invertible.

A multiplication operator Consider the space L2 ([0, 1]) with the usual
scalar product (de�ned in example 1.1.8) and let f ∈ L2 ([0, 1]) be a
continuous function. We de�ne the operator Mf on L2 ([0, 1]) by

(Mfx)(t) = f(t)x(t), x ∈ L2 ([0, 1]) , t ∈ [0, 1].

It is a bounded operator, because

‖Mfx‖2 =

∫ 1

0

|f(t)x(t)|2dt ≤ ‖f‖2
∞

∫ 1

0

|x(t)|2dt = ‖f‖2
∞‖x‖2.

where ‖f‖∞ = supt∈[0,1] |f(t)|. Hence ‖Mf‖ ≤ ‖f‖∞. (In fact, ‖Mf‖ =
‖f‖∞). J

The following example de�nes a widely used class of linear operators,
called integral operators:

Example 1.3.7 (Integral operators). Let k : [0, 1] × [0, 1] → C be a con-
tinuous function, called the kernel of the integral operator, and de�ne the
operator K on L2 ([0, 1]) by

(1.10) (Kx)(t) =

∫ 1

0

k(t, s)x(s)ds, t ∈ [0, 1].

Then, by the Cauchy-Schwarz inequality, we have for any �xed t ∈ [0, 1],

|Kx(t)|2 =

∣∣∣∣∫ 1

0

k(t, s)x(s)ds

∣∣∣∣2 ≤ ∫ 1

0

|k(t, s)|2ds

∫ 1

0

|x(s)|2ds =

∫ 1

0

|k(t, s)|2ds ‖x‖2

and thus

‖Kx‖2 ≤
(∫ 1

0

∫ 1

0

|k(t, s)|2dsdt

)
‖x‖2.

Because of the continuity of k, the double integral is �nite and hence

(1.11) ‖M‖ ≤
∫∫

[0,1]2
|k(t, s)|2dsdt <∞,

thus operator M is bounded. J
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Remark 1.3.8. Notice that we could have imposed a weaker condition on k,
by asking only that k ∈ L2([0, 1]× [0, 1]), and the resulting integral operator
would have still been bounded. l

Unfortunately, not all operators are bounded. And in fact, some very
natural and often-encountered operators are unbounded:

Example 1.3.9 (A di�erential operator). Let P be the space of formal
trigonometric polynomials on the interval [0, 2π], that is,

P =

{
N∑
n=1

(µn cos(nt) + νn sin(nt)) : N ∈ N and µn, νn ∈ C for n = 1, . . . , N

}
.

De�ne the scalar product 〈f, g〉 =
∫ 2π

0
f(t)g(t)dt for f, g ∈ P , and let P1

be the closure of P under the norm de�ned by this scalar product. We
de�ne the di�erential operator d

dt
on P which maps f ∈ P to f ′ ∈ P , its

formal derivative. It is a well de�ned linear operator on P , but it cannot
be extended to a bounded operator on P1. Indeed, for all n = 1, 2, . . . de�ne
fn(t) = 1√

π
sin(nt) ∈ P . Then

‖fn‖2 =
1

π

∫ 2π

0

sin2(nt)dt = 1, ∀n ≥ 1.

But

‖ d

dt
fn‖2 = ‖f ′n‖2 =

∫ 2π

0

n2

π
cos2(nt)dt = n2

and hence ‖ d
dt
‖ =∞ and so that d

dt
is an unbounded operator on P1. J

Remark 1.3.10. Of course, the notion of boundedness of an operator is very
closely connected to the norm of the spaces. If we de�ne the space P2 to be
the closure of P under the norm

‖f‖2
P2

=

∫ 2π

0

(
|f(t)|2 + |f ′(t)|2

)
dt,

then the di�erential operator

d

dt
: P2 → P1

would be a bounded operator! l
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1.4 The Adjoint of an Operator

For any Banach space B, an important associated space is the space of map-
pings F : H → F which are linear and continuous (or bounded). We shall
denote this space by B∗. It is called the dual (space) of B, and its elements
are called (continuous) functionals on H.

The dual space B∗ is a Banach space, with pointwise algebraic operations
and the operator norm (for a proof of this statement if B is a Hilbert space,
see Young (1988, p.61). The proof naturally extends to Banach spaces, for
it only uses the norm in B and not the scalar product).

The dual of an abstract Banach space can be pretty complicated (for
instance, the dual of L∞(R) has no simple representation � see Dunford &
Schwartz (1988, Theorem 16, p.296)) but for Hilbert spaces, the dual and the
space itself can be identi�ed. This important result is called the Riez-Fréchet
Theorem.

Theorem 1.4.1 (Riesz-Fréchet). Let H be a Hilbert space and let F be a
functional on H. Then there exists a unique y ∈ H such that

F (x) = 〈x, y〉, ∀x ∈ H,

and ‖F‖ = ‖y‖.

Proof. See Young (1988, p.62).

Just like in linear algebra, where the adjoint A∗ of a linear transformation
A is de�ned by 〈Ax, y〉 = 〈x,A∗y〉, we can de�ne the adjoint of a bounded
operator between two Hilbert spaces:

Theorem 1.4.2 (De�nition). Let T ∈ L(E,F ), where E,F are Hilbert
spaces. Then there exists a unique operator T ∗ ∈ L(F,E) such that

(1.12) 〈Tx, y〉F = 〈x, T ∗y〉E.

The operator T ∗ is called the adjoint of T .

Proof. See Young (1988, p.76).

Now let us calculate some adjoints of operators:

Example 1.4.3 (Adjoint of a multiplication operator). The multiplication
operator M on L2 ([0, 1]) de�ned by

Mx(t) = f(t)x(t), t ∈ [0, 1],
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where f ∈ C([0, 1]), has an adjointM∗ that is also a multiplication operator.
To �nd it, by de�nition of the adjoint, we must have

〈Mx, y〉 = 〈x,M∗y〉, ∀x, y ∈ L2 ([0, 1]) .

Rewriting this equation yields

(1.13)

∫ 1

0

f(t)x(t)y(t)dt =

∫ 1

0

x(t)M∗y(t)dt.

Hence

(1.14) M∗y(t) = f(t)y(t) almost everywhere.

It follows that
M∗y(t) = f(t)y(t).

Thus the adjoint of a multiplication operator is also a multiplication op-
erator. Notice that you can think of it in a ��nite dimensional� way: we
reduced the integral equation (1.13) to an in�nite dimensional analogue of
the linear algebra adjoint equation (1.14). We can easily see how the result of
this example could be extended to an operator on a vector-valued L2 space,
with multiplication operator given by a matrix At. J

Example 1.4.4 (Adjoint of an integral operator). Let k : [0, 1]× [0, 1]→ C
be continuous and de�ne the integral operator K on L2 ([0, 1]) by

Kx(t) =

∫ 1

0

k(t, s)x(s)ds.

The adjoint of K must satisfy 〈Kx, y〉 = 〈x,K∗y〉 for all x, y ∈ L2 ([0, 1]),
that is

(1.15)

∫ 1

0

∫ 1

0

k(t, s)x(s)y(t)dsdt =

∫ 1

0

x(t)(K∗y)(t)dt.

Now Fubini's Theorem allows us to interchange the order of integration to
get ∫ 1

0

x(t)(K∗y)(t)dt =

∫ 1

0

∫ 1

0

x(s)k(t, s)y(t)dt

and interchanging the role of t and s yields

=

∫ 1

0

∫ 1

0

x(t)k(s, t)y(s)dsdt

=

∫ 1

0

x(t)

(∫ 1

0

k(s, t)y(s)ds

)
dt.
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1 A REVIEW OF SOME HILBERT SPACE THEORY

Thus we must have

(1.16) K∗y(t) =

∫ 1

0

k(s, t)y(s)ds, for almost every t ∈ [0, 1].

K∗ is therefore an integral operator, with kernel k∗ given by the equation

k∗(t, s) = k(s, t).

Again, we can draw an analogy with the adjoint in the �nite dimensional
case: the kernel k∗ can be seen as a complex transpose of the kernel k �
informally of course. J

As we have seen in these examples, an operator and its adjoint are closely
related, and the following Theorem gives a relation between them:

Theorem 1.4.5. Let T ∈ L(E,F ), where E,F are Hilbert spaces.
Then T ∗∗ = T and ‖T ∗‖ = ‖T‖.

Proof. See Young (1988, p.78).

Some bounded operators are particularly tractable, especially those which
are equal to their adjoint:

De�nition 1.4.6. Let H be a Hilbert space. An operator T ∈ L(H) is called
normal if TT ∗ = T ∗T , that is, if T commutes with its adjoint.

An operator T is called a self-adjoint or Hermitian operator if T = T ∗.
Notice that a self-adjoint operator is necessarily normal. ¸

For example, a multiplication operator is self-adjoint if, and only if, f(t) =
f(t) almost everywhere. An integral operator will be self-adjoint if, and only
if k∗(t, s) = k(s, t) almost everywhere.

1.5 Compact Operators

A class of operators that have nice properties (close to those of matrices) is
the class of compact operators.

De�nition 1.5.1. A compact operator T : E → F between two Banach
spaces is a linear operator such that, for every bounded sequence (xn)n∈N in
E (that is, ∃K > 0 such that ‖xn‖ < K,∀n), the sequence (Txn)n ⊂ F has
a convergent subsequence. ¸

Notice that a compact operator is necessarily bounded, otherwise there
would exist a bounded sequence (xn)n in E such that ‖Txn‖ → ∞ when
n → ∞, and (Txn)n wouldn't have any convergent subsequence. Here is a
standard example of a compact operator:
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Example 1.5.2 (Finite rank bounded operators). De�ne the rank of an
operator T : E → F between two Banach spaces as the dimension of its
image. If it is �nite, then we say that T has �nite rank. Every bounded
�nite rank operator is compact (Young 1988, p.89). J

However, the most natural operator is not compact on an in�nite dimen-
sional Hilbert space:

Example 1.5.3 (Identity operator). LetH be an in�nite dimensional Hilbert
space, and take (en)n∈N to be an in�nite orthonormal sequence (such a se-
quence always exists). The sequence (en) is obviously bounded, however, for
all n 6= m we have

‖en − em‖2 = ‖en + (−em)‖2 = ‖en‖2 + ‖em‖2 = 2,

hence (Ien)n has no converging subsequence, and the identity operator is not
compact. J

The corollary to the following Theorem gives a method for constructing
compact operators:

Theorem 1.5.4. Let E,F be Banach spaces. Then the space of compact
operators is closed in L(E,F ) with respect to the operator norm.

Proof. See Young (1988, p.91).

Corollary 1.5.5. The limit (with respect to the operator norm) of a con-
verging sequence of bounded �nite rank operators is compact.

The next example gives a characterization of compact diagonal operators:

Example 1.5.6 (Diagonal operators). Let (λn)n be a bounded sequence of
complex numbers, and let H be a separable Hilbert space (of in�nite di-
mension) with the complete orthonormal sequence (en)n. Then the operator
A ∈ L(H) de�ned by

A

(∑
n

xnen

)
=
∑
n

λnxnen, xn ∈ F,

is compact if, and only if λn → 0.

Proof. See Young (1988, p.90).
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Compactness is a di�cult property to verify. There is another property,
stronger than compactness, that is easier to verify:

De�nition 1.5.7. Let E,F be Hilbert spaces, and T : E → F be a bounded
operator. Then T is called a Hilbert-Schmidt operator if there exists a com-
plete orthonormal sequence (en)n in E such that

(1.17)
∑
n

‖Ten‖2 <∞.

Remark 1.5.8. This notion is well de�ned, because if
∑

n ‖Ten‖2 <∞ for a
complete orthonormal sequence (en)n, then for any other complete orthonor-
mal sequence (fn)n, we have the equality

‖Ten‖2 =
∑
m

|〈Ten, fm〉|2

from Parseval's formula (1.4). Hence
(1.18)∑

n

‖Ten‖2 =
∑
n

∑
m

|〈Ten, fm〉|2 =
∑
m

∑
n

|〈en, T ∗fm〉|2 =
∑
m

‖T ∗fm‖2,

where the change of summation order is justi�ed because the summands are
positive. Hence we have

∞ >
∑
n

‖Ten‖2 =
∑
m

‖T ∗fm‖2 =
∑
m

‖Tfm‖2,

where the last equality comes from (1.18) by taking (en)n = (fn)n. Hence
the notion of Hilbert-Schmidt operator is well de�ned.

Notice also that the condition (1.17) implies that T is bounded, because if
x =

∑
i λiei ∈ E with norm less than one, then by the triangle and Cauchy-

Schwarz inequalities,

‖Tx‖ ≤
∑
i

|λi|‖Tei‖ ≤
√∑

i

|λi|2
∑
i

‖Tei‖2 = ‖x‖‖T‖HS <∞,

and thus ‖T‖ ≤ ‖T‖HS. l

We can de�ne a norm on the space of Hilbert-Schmidt operators. But
�rst, let us introduce the tensor product notation:
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De�nition 1.5.9. Let E,F be Hilbert spaces. For e ∈ E, f ∈ F , we de�ne
e⊗ f ∈ L(E,F ) by

e⊗ f(v) = 〈e, v〉f, v ∈ E.
Furthermore, the operator norm of e⊗f is ‖e⊗f‖ = ‖e‖‖f‖ <∞, and e⊗f
is a Hilbert-Schmidt operator. ¸

The interesting thing about Hilbert-Schmidt operators is that they form
a Hilbert space:

Proposition 1.5.10 (De�nition). Let E,F be separable Hilbert spaces. The
Hilbert-Schmidt norm of an operator T : E → F , is de�ned by

(1.19) ‖T‖HS =

√∑
n

‖Ten‖2,

for some complete orthonormal sequence (en) of E, and the sum is indepen-
dent of the choice of the complete orthonormal sequence.

We denote by LHS(E,F ) the space of Hilbert-Schmidt operators T : E →
F . It is itself a separable Hilbert space with the scalar product

(1.20) 〈T, S〉HS =
∑
n

〈Ten, Sen〉, T, S ∈ LHS(E,F ),

which is independent of the choice of (en) ⊂ E. If (fm) is a complete or-
thonormal sequence in F , then

(en ⊗ fm)n,m

is a complete orthonormal sequence in LHS(E,F ).
Furthermore, T ∗ ∈ LHS(F,E) if and only if LHS(E,F ) and we have

(1.21) ‖T‖HS = ‖T ∗‖HS.

Proof. Notice that (1.19) and (1.21) are direct consequences of Remark 1.5.8.
For the independence of (1.20) from the choices of the orthonormal sequence,
notice that for any complete orthonormal sequence (vm) of F , we have Sen =∑

m〈Sen, vm〉vm and thus∑
n

〈Ten, Sen〉 =
∑
n

∑
m

〈Sen, vm〉〈Ten, vm〉

=
∑
m

∑
n

〈T ∗vm, en〉〈S∗vm, en〉

=
∑
m

〈S∗vm, T ∗vm〉.
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Here, the permutation of the sums is allowed because the sum is absolutely
convergent. Indeed, notice that the Cauchy-Schwarz inequality yields

∑
n

[∑
m

∣∣∣〈Sen, vm〉〈Ten, vm〉∣∣∣] ≤∑
n

[∑
m

|〈Sen, vm〉|2
∑
m

|〈Ten, vm〉|2
]1/2

=
∑
n

‖Sen‖‖Ten‖

≤ ‖S‖HS‖T‖HS <∞.

Thus if (e′n) is another complete orthonormal sequence in E, then∑
n

〈Ten, Sen〉 =
∑
m

〈S∗vm, T ∗vm〉 =
∑
n

〈Te′n, Se′n〉,

and thus (1.20) is independent of the choice of the complete orthonormal
sequence.

Let us now end the proof by showing that (en ⊗ fm)n,m is a complete
orthonormal sequence in LHS(E,F ). First, notice that for T ∈ LHS(E,F ),
equation (1.20) yields

λi,j := 〈T, ei ⊗ fj〉HS = 〈Tei, fj〉,

and thus 〈ei⊗ej, en⊗em〉HS = δi,nδj,m shows that the sequence (en⊗fm)n,m is
orthonormal. Notice also that

∑
i,j λ

2
i,j = ‖T‖2

HS. Hence, the Hilbert-Schmidt

operator T̃ =
∑

i,j λi,jei ⊗ fj is well de�ned. It is in fact equal to T because

‖T − T̃‖2
HS =

∑
n

∥∥∥∥∥Ten −∑
j

λn,jfj

∥∥∥∥∥
2

=
∑
n

∥∥∥∥∥Ten −∑
j

〈Ten, fj〉fj

∥∥∥∥∥
2

= 0,

since (fj) is a complete orthonormal sequence in F . Thus (en ⊗ fm)n,m is a
complete orthonormal sequence in LHS(E,F ), and this shows that LHS(E,F )
is indeed a separable Hilbert space.

The following Theorem characterizes the Hilbert-Schmidt operators on
L2 spaces:

Theorem 1.5.11. When H = L2(M,dµ), with (M,µ) a measure space, then
A ∈ L(H) is Hilbert-Schmidt if and only if it is an integral operator, with
kernel k ∈ L2(M ×M,dµ× dµ).
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Proof. See Reed & Simon (1972, p.210).

Theorem 1.5.12. Hilbert-Schmidt operators are compact.

Proof. See Young (1988, p.93)

Now we can ask ourselves if all compact operators are Hilbert-Schmidt.
If our Hilbert space is an L2(M,dµ) space, then the question is equivalent to
asking whether all compact operators are integral operators. It is unfortu-
nately not the case:

Example 1.5.13. Take a diagonal operator T on a Hilbert space H with
λn = 1/

√
n, n ≥ 1 and let (en)n be the corresponding complete orthonormal

sequence (see 1.5.6 for the de�nition of a diagonal operator). Then∑
n

‖Ten‖2 =
∑
n

1

n
=∞,

and thus, T is compact but not Hilbert-Schmidt. J

Another important type of operators are the nuclear operators, for which
the notion of trace can be de�ned:

De�nition 1.5.14. A bounded operator T ∈ L(H) on a Hilbert space H
is called nuclear � or trace class � if there exists a complete orthonormal
sequence (en)n in H such that

(1.22)
∑
n

|〈en, T en〉| <∞.

In this case, we de�ne the trace by the formula

trace (T ) =
∑
n

〈en, T en〉.

Remark 1.5.15. As with the de�nition of a Hilbert-Schmidt operator, the
de�nition of the trace of a nuclear operator doesn't depend on the choice
of the complete orthonormal basis. Suppose T satis�es (1.22) for a partic-
ular (en). Using Weidmann (1980, Theorem 7.9), we get the decomposition
T = T1T2 with T1, T2 ∈ LHS(H). Noticing that 〈en, T en〉 = 〈T ∗1 en, T2en〉, we
directly have, for any other orthonormal basis (vm)∑

n

〈en, T en〉 = 〈T ∗1 , T2〉HS =
∑
m

〈T ∗1 vm, T2vm〉 =
∑
m

〈vm, T vm〉,

where the second equality is due to Proposition 1.5.10.
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Notice also that a trace class operator is necessarily Hilbert-Schmidt.
Indeed, using once again the decomposition T = T1T2, we get∑

n

‖Ten‖2 =
∑
n

‖T1T2en‖2 ≤ ‖T1‖
∑
n

‖T2en‖2 <∞,

where ‖T1‖ < ‖T1‖HS < ∞. If we denote by L1(H) (LC(H)) the set of all
trace class (respectively compact) operators on H, we have the following
inclusions:

L1(H) ⊆ LHS(H) ⊆ LC(H) ⊆ L(H).

1.6 The Spectral Theorem for Compact Self-Adjoint

Operators

The Spectrum

When studying linear operators on �nite dimensional spaces, it is equivalent
to say that λ is an eigenvalue of A and that the operator A − λI is not
invertible. Indeed, if T is an operator on a �nite dimensional space, the
following conditions are equivalent:

1. ker(T ) = {0}, that is, T is injective.

2. T is invertible.

However, this isn't true for in�nite dimensional vector spaces: an operator
can be injective without being invertible! For instance, the shift operator S
on `2 de�ned by

S(x1, x2, . . .) = (0, x1, x2, . . .)

in injective, but not invertible. Nevertheless, if an operator is not injective,
it cannot be invertible. Thus for in�nite dimensional spaces, instead of using
only the set of eigenvalues, we de�ne the spectrum of an operator, which
contains the set of eigenvalues of the operator:

De�nition 1.6.1. Let B be a Banach space and A ∈ L(B). The spectrum
of A is the set

σ(A) = {λ ∈ F : A− λI is not invertible} .

The eigenvalues of A is the set of λ ∈ F such that Av = λv for a non-zero
v ∈ B. ¸

It is possible for an operator to have no eigenvalue, even if it is compact:
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Example 1.6.2. Let H = L2 ([0, 1]). The Volterra operator on H de�ned
by

Kf(t) =

∫ t

0

f(s)ds =

∫ 1

0

χ[0,t](s)f(s)ds

is a (bounded) integral operator, with k(t, s) = χ[0,t](s), where χA is the
indicator function on the set A. It is a Hilbert-Schmidt operator, and hence
is compact, but it has no eigenvalue. Indeed, suppose there exists a non-zero
element x ∈ H and λ ∈ R such that∫ t

0

x(s)ds = λx(t), ∀t ∈ [0, 1]

Then by di�erentiating with respect to t, we get the di�erential equation
x(t) = λẋ(t), with the initial condition x(0) = 0. If λ = 0, then x = 0, so
λ = 0 is not an eigenvalue. If λ 6= 0, the general solution of this di�erential
equation is x(t) = ket/λ, and the initial condition forces us to set k = 0, and
thus x = 0. In conclusion, the Volterra operator K has no eigenvalue. J

One may wonder why we do not just talk about the eigenvalues of an
operator, and we bother ourselves with the spectrum. I posed the question
to Professor Nicolas Varopoulos, and he replied that the motivation was the
development of symbolic calculus for operators. For an operator T ∈ L(H),
we make sense of T 2 by composition of T with itself: T 2 = T ◦T. In the same
way, we can de�ne T n for any n ∈ N, with the convention T 0 = I. Hence we
can give a meaning to p(T ), where p ∈ C[x] is a polynomial with complex
coe�cients. The next question that naturally arises is to give a meaning
to f(T ) for a more general function f : C → C. Consider the case where
f : C → C is holomorphic on a set D − {z0}, with D ⊂ C being open and
connected. Then if the Laurent series of f around z0 is

∑∞
n=−∞ an(z − z0)n,

we could de�ne f(T ) by

f(T ) =
∞∑

n=−∞

an(T − z0I)n.

Hence for such a de�nition to make sense, when not all a−m,m ≥ 1 are zero,
we need to ask for the operator (T − z0I) to be invertible, and this motivates
the de�nition of the spectrum of an operator.

Now let us continue our investigation of the spectrum. It is straightfor-
ward that the set of eigenvalues of an operator is contained, but need not be
equal, to its spectrum. This will be illustrated in the next example:

Example 1.6.3 (from Young (1988)). Let f ∈ L2 ([0, 1]) be continuous,
and let Mf be the induced multiplication operator on L2 ([0, 1]), de�ned in
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example 1.3.6. Let I = f([0, 1]), and let us show that σ(Mf ) = I. Indeed,
if λ /∈ I, then Mf̃λ

is the inverse of Mf − λI, where f̃λ(t) = (f(t) − λI)−1

is continuous. However, if λ ∈ I, then (Mf − λI) has no bounded inverse.
Indeed, suppose such an inverse, which we will call T , exists. We know that
f(t0) = λ for a t0 ∈ [0, 1], thus if we de�ne the intervals Jn about t0 of length
δn > 0 such that |f(t)− λ| < 1/n for t ∈ Jn, and de�ne gn(t) = δ−1/2χJn(t),
then ‖gn‖ = 1 for all n > 0,

yn := (Mf − λI)gn → 0, n→∞,

but T (Mf − λI)gn = gn, which violates the continuity of T (recall that
continuity is equivalent to boundedness for linear operators).

So we have that σ(Mf ) = f([0, 1]). However, if we take the particular
case f(t) = t, then trying to solve the eigenvalue equation

tx(t) = λx(t), λ ∈ [0, 1] = f([0, 1]),

yields x = 0. Thus a bounded operator can have a spectrum but no eigen-
value. J

The following results about invertibility, taken from Halmos (1957), will
help us better understand the spectrum:

De�nition 1.6.4. An operator T ∈ L(B,B′), where B and B′ are Banach
spaces, is said to be bounded from below if there exists a real α ≥ 0 that
satis�es

‖Ax‖B′ ≥ α‖x‖B, ∀x ∈ B.

Proposition 1.6.5. Let B,B′ be Banach spaces and T ∈ L(B,B′) be bounded
from below. Then the image of T is closed.

Proof. Let yn = Txn be any Cauchy sequence in Im(T ) ⊂ B′, and let y be
its limit. We need to show that y ∈ Im(T ).

From the Cauchy property, for any ε > 0, we have for n,m larger than
N = Ny(ε) > 0 that

ε ≥ ‖yn − ym‖ = ‖T (xn − xm)‖ ≥ α‖xn − xm‖,

and hence (xn)n is Cauchy with Nx(ε) = Ny(ε/α). Therefore (xn)n is Cauchy
in B, with limit x. By the continuity of T ,

y = lim
n
Txn = T

(
lim
n
xn

)
= Tx ∈ Im(T ).
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We can now give a characterization of invertibility for operators between
Banach spaces:

Theorem 1.6.6 (Characterization of invertibility in Banach spaces). An
operator T ∈ L(B,B′), where B and B′ are Banach spaces, is invertible if
and only if the two following conditions hold:

(i) T is bounded from below

(ii) Im(T ) is dense in B′.

Proof. Suppose T is invertible. Then (ii) is trivial, and we only need to show
(i). Let S = T−1 be the inverse of T . For any x ∈ B, we have

‖x‖ = ‖STx‖ ≤ ‖S‖‖Tx‖,

so taking α = ‖S‖−1 <∞ yields (i).
Conversely, suppose (i) and (ii) hold. Then by the previous proposition,

Im(T ) = B′, and if Tx = 0, then

0 = ‖Tx‖ ≥ α‖x‖

so x = 0 and T is injective. Hence T is bijective, and we can de�ne S : B′ →
B by

Sy = x if, and only if Tx = y, ∀y ∈ B′.

S is the just the set-inverse of T . To show that it is the inverse of T , we need
to show that it is linear and bounded. Linearity is straightforward to check,
and its boundedness is a direct consequence of (i):

‖Sy‖ = ‖x‖ ≤ 1

α
‖Tx‖ =

1

α
‖y‖

for all y ∈ B′, hence ‖S‖ ≤ 1
α
< ∞ and T is invertible, with T−1 = S. The

proof is complete.

Now we can apply these results to the spectrum. We know that λ ∈ σ(A)
if and only if (A− λI) is not invertible, which in the light of Theorem 1.6.6
occurs if and only if one of the two following conditions hold:

(i) (A− λI) does not have a dense range,

(ii) (A− λI) is not bounded from below.

So now we can classify the points of the spectrum:

25/123



1 A REVIEW OF SOME HILBERT SPACE THEORY

De�nition 1.6.7. For an operator T ∈ L(B) on a Banach space B, we de�ne
the compression spectrum Γ(T ) of T to be the set of the λ ∈ σ(T ) for which
(T − λI) does not have a dense range, and we also de�ne the approximate
point spectrum Π(T ) to be the set of λ ∈ σ(T ) such that (T − λI) is not
bounded from below.

Notice that λ ∈ Π(T ) if, and only if, there exists a sequence (vn)n of unit
vectors such that (T−λI)vn → 0 when n→∞. There might exist a non-zero
vector v such that (T − λI)v = 0, in which case Tv = λv and the action
of the operator T on v is very simple: it only scales v by a factor λ. Such
a vector is called an eigenvector of T , and λ is the associated eigenvalue.
The set of eigenvalues of T is sometimes called the point spectrum of T , and
will be denoted by Π0(T ). Notice that it is a subset of Π(T ). Figure 1.2
illustrates these concepts. ¸

Figure 1.2: The spectrum of an operator T . Γ(T ) is the compression spectrum

of T , Π0(T ) ⊂ Π(T ) is the set of eigenvalues of T , or point spectrum
of T , and Π(T ) is the approximate point spectrum of T .

Here is a general fact about the spectrum:

Theorem 1.6.8. If T ∈ L(B), then the spectrum σ(T ) is a compact subset
of F contained in the closed disc of radius ‖T‖ around the origin.
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Proof. See Young (1988, p.81) for a proof in the case F = C. The proof for
the case F = R is exactly the same.

The Spectrum of Compact Operators

If we assume compactness of an operator, then we have the following nice
result:

Theorem 1.6.9. Let T ∈ L(H) be compact. Then

(1.23) Π0(T ) ⊇ Π(T )− 0,

that is, every non-zero element of the approximate point spectrum is in fact
an eigenvalue.

Proof. By de�nition, Π0(T ) ⊂ Π(T ). Let λ ∈ Π(T ) be di�erent from zero.
We have to show that λ is an eigenvalue of T .

There exists a sequence (xn)n of unit vectors such that (T − λI)xn → 0.
By the compactness of T , we can assume � without loss of generality � that
Txn converges to y. But then, we must have that

λ lim
n
xn = lim

n
Txn = y,

and thus y 6= 0 (recall that λ 6= 0 and that the xn's are unit vectors). Now
by continuity of T , we have

Ay = λ lim
n
Axn = λy,

and hence λ is an eigenvalue of T , and the proof is complete.

Compactness also gives a sort of bound on the cardinality of the spectrum:

Theorem 1.6.10. If the spectrum σ(T ) of a compact operator T ∈ L(B)
is in�nite, then σ(A) is countable and has exactly one accumulation point,
namely, zero.

Proof. See Dunford & Schwartz (1988, p.579).

Since we already know that the spectrum is compact, the following result
is direct:

Corollary 1.6.11. For a compact operator, without loss of generality, we
can suppose that σ(T ) = (λn)n ∪ {0} such that:

(i) |λn+1| ≤ |λn| ≤ ‖T‖, for all n ∈ N,

(ii) limn λn = 0

Let us now see some properties of the spectrum for normal operators.
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The Spectrum of Normal Operators

For normal operators, we have the following result:

Theorem 1.6.12. If T ∈ L(B) is normal, then Π(T ) = σ(T ), that is, the
spectrum is equal to the approximate point spectrum.

Proof. See Halmos (1957, p.57).

The direct consequence, using Theorem 1.6.9 is:

Corollary 1.6.13. For a normal compact operator T ∈ L(H), we have

Π0(T ) ⊇ σ(T )− 0.

Hence compact normal operators behave almost like �nite dimensional
operators, at least in terms of their spectrum: except for λ = 0, an element
of the spectrum is the same as an eigenvalue.

We now consider the spectrum for self-adjoint operators.

The Spectrum of Self-Adjoint Operators

We know by Theorem 1.6.8 that

sup {|λ| : λ ∈ σ(T )} = max {|λ| : λ ∈ σ(T )} ≤ ‖T‖

for T ∈ L(B), where the supremum is a maximum because of the compactness
of the spectrum. For self-adjoint operators, the bound is achieved:

Theorem 1.6.14. Let T ∈ L(H) be self-adjoint. Then

max {|λ| : λ ∈ σ(T )} = ‖T‖.

Proof. See Halmos (1957, p. 55)

Now we know that the spectrum of a self-adjoint operator is never empty.
Actually, we even have a stronger result if we use Theorem 1.6.12:

Corollary 1.6.15. For a self-adjoint operator T ∈ L(H), we have the equal-
ity

(1.24) max {|λ| : λ ∈ Π(T )} = ‖T‖.

We also have another nice result:

Theorem 1.6.16. The spectrum of a self-adjoint operator is a subset of R.

Proof. See Rudin (1991, p. 314)

We will now look at the spectrum of compact and self-adjoint operators.
This class of operators will be of great importance in this report.
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The Spectrum of Compact Self-Adjoint Operators

Remark 1.6.17. In the latter, we shall use the abbreviation CSA for �Com-
pact and Self-Ajoint�. l

Now we can merge our results to get:

Theorem 1.6.18. Let T ∈ L(H) be CSA. Then

(i) ‖T‖ or −‖T‖ is an eigenvalue of T ,

(ii) Π0(T ) = σ(T )− {0},

(iii) Two eigenvectors corresponding to di�erent eigenvalues of T are or-
thogonal,

(iv) When the spectrum of T is in�nite, we can suppose, without loss of
generality, that σ(T ) = {(λn)n} ∪ {0}, where the λn's are eigenvalues
of T and

(a) |λ0| = ‖T‖,

(b) |λn+1| ≤ |λn| ≤ ‖T‖, for all n ∈ N, and

(c) limn λn = 0.

Proof. The statements (i), (ii) and (iv) are direct consequences of the The-
orems 1.6.14, 1.6.9, 1.6.12 and Corollary 1.6.11.

For the proof of (iii), let µ 6= λ be eigenvalues of T with eigenvectors
v, w, respectively. By self-adjointness, we know that the eigenvalues are real
numbers. Hence

0 = 〈Tv, w〉 − 〈v, Tw〉
= (λ− µ̄)〈v, w〉 = (λ− µ)〈v, w〉,

and the desired result is proved.

So CSA operators are very well-behaved: if T ∈ L(H) is CSA, then
there exists a (possibly �nite) sequence (λn, ϕn)n where the λn's are eigen-
values with corresponding eigenvectors ϕn, and we can assume without loss
of generality that all the eigenvectors are orthonormal (indeed, if they have
the same eigenvalue, we can just orthogonalize them via the Gram-Schmidt
procedure to make then orthonormal). Hence for any vector in the closed
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subspace span(ϕn)n the operator T acts in a very nice way, because we can
write:

v =
∑
n

〈v, ϕn〉ϕn

Av =
∑
n

λn〈v, ϕn〉ϕn.

The natural question that arises now is wether this expression holds for all
v ∈ H. The answer is yes, and it is given by the famous spectral Theorem
for CSA operators:

Theorem 1.6.19 (Spectral Theorem for compact and self-adjoint opera-
tors). Let H be a Hilbert space, and T ∈ L(H) be a compact and self-adjoint
operator. Then T has the expression

(1.25) Tv =
∑
n

λn〈v, ϕn〉ϕn, ∀v ∈ H,

where (ϕn)n is a �nite or in�nite sequence or orthonormal eigenvectors with
respective real eigenvalues (λn)n that satisfy:

(a) |λ0| = ‖T‖,

(b) |λn+1| ≤ |λn| ≤ ‖T‖, for all n ∈ N, and

(c) limn λn = 0, whenever the sequence (λn)n is in�nite.

Proof. See Young (1988, p.99).

There is a nice and straightforward consequence of this Theorem:

Corollary 1.6.20. Any CSA operator on a non-separable Hilbert space has
a non-trivial kernel.

1.7 The Singular Value Decomposition of Compact Op-

erators

Let us brie�y return to compact operators and state an important decom-
position Theorem. Let H be a Hilbert space (supposed real for simplicity),
and notice that for a compact operator T : H → H, the operator T ∗T is
self-adjoint and compact. Indeed, if (xn) is a bounded sequence in H, then
(Txn) admits a convergent subsequence, and so does (T ∗(Txn)) by continuity
of T ∗. Thus the spectral Theorem for compact self-adjoint operators yields
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the decomposition T ∗T =
∑

j λjej ⊗ ej, where (ej) ⊂ H is an orthonormal
sequence, and λj 6= 0,∀j. If we let vj = Tej, we notice that 〈vj, vi〉 = λjδij.
Let S =

∑
j ej ⊗ vj, which is a well de�ned bounded operator on H because

if x ∈ H, ‖x‖ < 1, then

Sx =
∑
j

〈ej, x〉Tej = T

(∑
j

〈ej, x〉ej

)
,

and ‖S‖ ≤ ‖T‖. Then S equals T on span(ej), and if f ∈ span(ej)
⊥
, then

T ∗Tf = 0 and thus 0 = 〈T ∗Tf, f〉 = 〈Tf, Tf〉, yielding that

ker(T ) = span(ej)
⊥

= ker(S).

Thus the operators S and T are equal. Eventually, letting µj = ‖vj‖ and fj =
vj/µj, we have the following decomposition Theorem for compact operators:

Theorem 1.7.1 (Singular Value Decomposition for Compact Operators).
Let H be a Hilbert space, and T : H → H a compact operator. Then there
exists orthonormal sequences (ej), (fj) ⊂ H and a decreasing sequence of
positive real numbers (µj), called singular values of T , such that

T =
∑
j

µjej ⊗ fj,

where the convergence is in operator norm. Furthermore, if the sequence (µj)
is in�nite, then limj→∞ µj = 0.

Proof. The paragraph preceeding the Theorem contains the essential ideas,
except for the last statement which is a consequence of Theorem 1.6.19 and
the equality

λj = 〈T ∗Tej, ej〉 = 〈Tej, T ej〉 = ‖vj‖2 = |µj|2.

For a more rigorous proof of the Theorem, see Weidmann (1980, Theorem
7.6) for instance.

Conclusions

In this section, we have seen how the concepts of vector space and linear
transformation become more complicated in in�nite dimensional spaces. We
have seen that the �smallest� in�nite dimensional Hilbert spaces (the sep-
arable Hilbert spaces) are like `2 spaces, and that the link is given by the
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choice of a complete orthonormal sequence. This notion resembles that of an
orthonormal basis for �nite dimensional spaces, but not exactly, because of
the use of the limit in the expressions

∑∞
n=0〈x, ei〉ei. We have also seen sev-

eral types of continuous operators: the compact operators, for which we have
almost the same properties as for matrices. The important results of this sec-
tion are the spectral Theorem for compact self-adjoint operators (Theorem
1.6.19), and the singular value decomposition (SVD) for compact operators
(Theorem 1.7.1). Besides giving us a nice representations of operators, the
SVD provides us with a canonical way of associating operators and sequences.
For a compact operator T =

∑
j λjej ⊗ fj, the decreasing sequence (λj) is

a sequence of numbers with limit 0 (if it is in�nite). Furthermore, if T is
Hilbert-Schmidt, the sequence (λj) will be in `2, and if T is trace-class, (λj)
will be an `1 sequence.
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2
Fundamentals of

Probability in Abstract Spaces

The ultimate goal of the present report is to consider basic hypothesis tests
for functional data. Often, functional data are assumed to be realisation
of some random process taking values in a Hilbert space, such as L2 ([0, 1])
for instance, and we want to carry out inferences for this process. In other
words, we would like to do statistics on function spaces (or more generaly
on Banach or Hilbert spaces). However, we need �rst to understand how to
put a handle on probability measures on such spaces. Especially, we need to
understand what a Gaussian random variable in such spaces is.

In this section, we will �rst introduce the concepts of measure theory
that are useful for the study of random processes, and give a Theorem about
the existence of processes, due to Kolmogorov. We will then introduce Gaus-
sian random vectors and some of their properties, before presenting Gaussian
Processes. This way, we will see the analogies between the �nite and in�-
nite dimensional setup. Afterwards, basic notions of probabilities in Banach
spaces will be presented, and selected limit Theorems for sequences of Ba-
nach space-valued random variables will be given. We will conclude with
some remarks on the de�nition of Gaussian processes.

2.1 Some Necessary Measure Theory

In order to de�ne the notion of random process, we need to understand what
a measurable map Ω→ X is, where

X ⊂ R[0,1] := {f : [0, 1]→ R} ,

we need to construct a σ-algebra for R[0,1]. A way of doing this is by using
ideas similar to the ones used in topology, which we present here.
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Recall the de�nition of the product topology: let (Si, τi) be topological
spaces for i ∈ I. On the product space S =

∏
i∈I Si we de�ne the topology τ

generated by the sub-basis{
Aj ×

∏
i 6=j

Si : j ∈ I, Aj ∈ τj

}
.

This topology is called the product topology, and we have the following result:

Proposition 2.1.1. Let A be a topological space, S as above, with the product
topology, and let fi : A→ Si be set functions.

Then the mapping f : A→ S, de�ned by f(a) = (fi(a))i∈I , is continuous
if, and only if fi : A→ Si is continuous ∀i ∈ I.

Proof. See Munkres (2000)

In a very similar way, we de�ne the product metric space:

De�nition 2.1.2. Let (Si,Ai)i∈I be measurable spaces, that is, Ai is a σ-
algebra of subsets of Si. A column on the cartesian product

S =
∏
i∈I

Si

is a set of the form
Aj ×

∏
i 6=j

Si, Aj ∈ Aj.

We will denote by A =
⊗
Ai the σ-algebra generated by all the columns

on S. The pair (S,A) is a measurable space, called the product measurable
space.

When all the (Si,Ai) are the same, say equal to (S,A), then we write
SI =

∏
i∈I S and the σ-algebra is AI =

⊗
i∈I A. ¸

Notice that this is very similar to the product topology de�ned above.
We also have a result similar to Proposition 2.1.1:

Proposition 2.1.3. Let Ω be a measurable space, S and the Si's as in the
previous de�nition, and let fi : Ω→ Si be set functions.

Then, the mapping f : Ω→ S, de�ned by f(ω) = (fi(ω))i∈I , is
⊗

i∈I Ai-
measurable if, and only if fi : A→ Si is measurable ∀i ∈ I.

Proof. See Kallenberg (1997, p.4)

The following proposition tells us what a measurable set looks like in the
product measurable space:
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Proposition 2.1.4. We use here the notation of de�nition 2.1.2. Let A ⊂ S.
Then A ∈

⊗
i∈I Ai if, and only if A = E×

∏
i∈I\J Si, with J ⊂ I countable

and E ∈
⊗

i∈J Ai.

Proof. See Halmos (1974b, p.158).

Our goal here is to de�ne properly what a random process is in order to
better understand random elements of abstract spaces. A concrete example
of a process is standard Brownian motion, which is a special measurable
mapping Ω → R[0,∞) = {f : [0,∞)→ R}. So a process is a measurable
mapping from a probability space Ω into a product measurable space. From
now on, we will write T for the index set, instead of I. Secretely, we are
thinking of T as of some time index, but we will not assume any kind of
structure on T unless speci�cally mentionned.

Remark 2.1.5. From now on, we will assume that Ω is a probability space
with σ-algebra O and probability measure P. l

De�nition 2.1.6 (Proposition). Let (S,A) be a measurable space, and T
be an index set. A mapping

(2.1) X : Ω→ U ⊂ ST

is U∩AT -measurable if, and only if Xt : Ω→ S is A-measurable for all t ∈ T ,
where Xt = πt ◦X, with πt : ST → S the projection on the tth coordinate.

Such a map is called an S-valued (random) process on T with paths in
U , or just a random process on T when S = R and U = RT .

Proof. See Kallenberg (1997, p.24).

For any random function ξ, η : Ω → S, we will write ξ
d
= η to say that

ξ and η are equal in distribution, that is, P ◦ ξ−1 = P ◦ η−1. For a process
X : Ω→ ST , the �nite dimensional distributions are given by

(2.2) {P ◦ (Xt1 , . . . , Xtn) : t1, . . . , tn ∈ T, n ∈ N} .

The following result is crucial, because it tells us that it is enough to know
all �nite dimensional distributions of a process in order to de�ne uniquely its
distribution:

Proposition 2.1.7. Let S, T, U be as in De�nition 2.1.6. Let X, Y be S-
valued processes on T with paths in U .

Then X
d
= Y if, and only if all their �nite dimensional distributions agree.

Proof. See Kallenberg (1997, p.25).
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2.2 Existence of Processes

Now we know how to specify the distribution of a process. However, we don't
know if, given a collection of �nite dimensional distributions, there exists a
process with those �nite dimensional distributions. We are going to give an
answer to this question.

Notation 2.2.1. Let T be an index set. We will denote by T̂ the set of all
�nite subsets of T .

For I ∈ T̂ , let SI =
∏

i∈I Si, AI =
⊗

i∈I Ai, and let ξI be the restriction
of the process (ξt)t∈T to I.

For I, J ∈ T̂ , I ⊂ J , de�ne the coordonate-wise projections

πJ : ST → SJ

and

πJI : SJ → SI .

If a measurable map ξ : Ω→ ST has probability distribution µ, then it is
straightforward that the restrictions µJ = µ◦π−1

J , J ∈ T̂ satisfy the following
property:

De�nition 2.2.2. A family of probability measures µJ : SJ → [0, 1], J ∈ T̂
is called a projective family if
(2.3)

µI = µJ ◦ (πJI )−1, ∀I, J ∈ T̂ , I ⊂ J. ¸

A projective family is a family of �compatible� measures, in the sense that
the measures do not contradict themselves. The existence Theorem we aim
at involves some kind of topological structure on the measurable spaces St.

De�nition 2.2.3. Two measurable spaces S and T are called Borel isomor-
phic if there exists a bijection f : S → T such that f and f−1 are both
measurable.

A measurable space is called a Borel space if it is Borel isomorphic to a
Borel subset of [0, 1]. ¸

Now we can state an existence Theorem for processes:

Theorem 2.2.4 (Existence of processes, Kolmogorov). For any collection of
Borel Spaces St, t ∈ T , and any projective family of probability measures µI
on SI , I ∈ T̂ , there exists some measurable function ξt on St, for all t ∈ T ,
such that ξI has distribution µI , for all I ∈ T̂ .

Proof. See Kallenberg (1997, p.92)
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2.3 Gaussian Random Vectors

Before introducing Gaussian random processes, let us recall some facts about
Gaussian random vectors. This will then allow us to see the analogies between
the Gaussian random vectors � which are random variables taking values in a
�nite dimensional space � and Gaussian random processes, that are random
variables taking values in an in�nite dimensional space.

First, let us introduce some notation:

Notation 2.3.1. A vector a ∈ Rn will always be thought of as a column
vector with components ai ∈ R, that is,

a = (a1, . . . , an)T =

a1
...
an

 ∈ Rn.

Hence if we write x, y ∈ Rn, the product xTy is a real number and xyT is a
n× n matrix. Explicitly,

xTy = (x1, . . . , xn)

y1
...
yn

 =
n∑
j=1

xjyj

and

xyT =

x1
...
xn

 (y1, . . . , yn) =

x1y1 · · · x1yn
...

. . .
...

xny1 · · · xnyn


Before de�ning Gaussian processes, we are now going to introduce Gaus-

sian random variables and vectors, and some of their properties. The reader
interested in the proofs of the following statements may refer to any mathe-
matical statistics textbook, like Roussas (1997) for instance.

A random variable X Gaussian with mean µ and variance σ2 is a real

valued random variable with density f(x) = 1√
2πσ2

e−
1
2(x−µσ )

2

, or equivalently,

with characteristic function ϕ(t) = EeitX = eiµt−
1
2
σ2t2 , where i ∈ C. We

usually write X ∼ N (µ, σ2).
A Gaussian random vector is a random vector X = (X1, . . . , Xn)T such

that the random variable aTX is Gaussian for all vectors a ∈ Rn. An equiv-
alent condition is to ask for its characteristic function to be

ϕ(t) = eit
Tµ− 1

2
tTΣt, t ∈ Rn,
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where µ ∈ Rn, and Σ is a n×n symmetric, nonnegative-de�nite matrix (that
is, Σ = ΣT, and for all vectors t ∈ Rn, tTΣt ≥ 0). The vector µ ∈ Rn is
the mean of the random vector, µ = EX, and the matrix Σ is the covariance
matrix de�ned by Σij = cov(Xi, Xj) = E [(Xi − µi)(Xj − µj)]. We write
X ∼ N (µ,Σ).

Notice that the knowledge of the matrix Σ and the mean µ determines
entirely the distribution of X. Also, if A is a k × n matrix, then AX ∼
N (Aµ,AΣAT). Each coordinate Xj is therefore Gaussian, and for j 6= l, Xj

and Xl are independent if, and only if cov(Xj, Xl) = 0.

Notice also that the covariance matrix Σ can be thought as an operator
on Rn, acting by left-multiplication and sending t ∈ Rn to Σt ∈ Rn. Now
because Σ is symmetric, the associated operator is self-adjoint, and thus the
spectral Theorem (for �nite-dimensional vector spaces) tells us that there are
n orthogonal eigenvectors ϕ1, . . . , ϕn ∈ Rn of Σ, with non-negative eigenval-
ues λ1, . . . , λn ≥ 0. Letting Λ being the diagonal matrix with entries Λjj = λj
and U being the orthogonal matrix with the eigenvector ϕj at column j, we
have the decomposition Σ = UΛUT. This gives the following decomposition
of a Gaussian random vector:

Proposition 2.3.2 (Orthogonal decomposition). Let X,µ,Σ,Λ, U be as in
the last paragraph. Then X ∼ µ + UZ, where Z = (Z1, . . . , Zn) and the
Zj's are independent Gaussian random variables with variances λj. That
is, any Gaussian random vector is obtained by rotation and translation of
independent Gaussian random variables.

Proof. Let Y = X−µ, and notice that Y ∼ N (0,Σ). Now the decomposition
Σ = UΛUT yields directly Y ∼ UN (0,Λ), and the proof is complete.

Now that we have seen some properties of Gaussian random vectors, let
us introduce their in�nite dimensional analogue.

2.4 Gaussian Processes

In this section we are going to de�ne what a Gaussian process on T = [0, 1]
is.

De�nition 2.4.1. A Gaussian Process on [0, 1] with paths in L2 ([0, 1]) =
L2 ([0, 1],R) is a R-valued random process X (in the sense of de�nition 2.1.6)
with

1. EX2
t <∞,∀t ∈ [0, 1],
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2. X(ω) ∈ L2 ([0, 1]) for all ω ∈ Ω, and all its �nite dimensional distribu-
tions are Gaussian. That is, the real-valued random variables

ω 7→
n∑
i=1

αiXti(ω)

are Gaussian, for all n = 1, 2, . . . , α1, . . . , αn ∈ R and t1, . . . , tn ∈ [0, 1].

We can then de�ne m(t) = EXt the mean function of X and

r(s, t) = cov(Xs, Xt),

the covariance function of X. ¸

Before going farther in the presentation of Gaussian processes, let us
introduce the commonly used notation for process:

Notation 2.4.2. Let πt : R[0,1] → R be the projection on the coordinate t,
that is, πt(f) = f(t), where f ∈ R[0,1]. Then we write Xt for the random
variable

Xt = πt ◦X : Ω→ R,
and hence, if we �x t ∈ [0, 1], the random process X induces a real random
variable Xt.

However, if we �x ω ∈ Ω, then t 7→ Xt(ω) is an L2 ([0, 1])function. This
latter representation allows us to think of the Gaussian process as de�ning
random elements in L2 ([0, 1]).

We will assume, without loss of generality, that m(t) = 0 for all t ∈ [0, 1],
otherwise just de�ne the process Yt = Xt −m(t), which has mean zero. We
shall call such process a zero-mean or centered process. In this case the
covariance function simpli�es to r(s, t) = E [XsXt]. In order for things to be
properly de�ned, we will assume, from now on, that the covariance function
r(s, t) satis�es the condition

(2.4) t 7→ r(t, t) is an L2 ([0, 1]) function.

Hence we directly have

E
[∫ 1

0

X2
t dt

]
=

∫ 1

0

EX2
t dt =

∫ 1

0

r(t, t) ≤ ∞

and also that t 7→ r(s, t) is an L2 ([0, 1]) function for all s ∈ [0, 1], for

r(s, t) = E [XsXt] ≤
√

E [X2
s ] E [X2

t ] ≤
√
r(s, s)

√
r(t, t)

and [0, 1] is compact. Notice that the condition (2.4) is satis�ed whenever
r(s, t) is a continuous function.

We have the following basic property of the covariance function:
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Proposition 2.4.3. The covariance function r(s, t) is symmetric and non-
negative de�nite, which means that for all f ∈ L2 ([0, 1]),

(2.5)

∫∫
[0,1]2

f(s)f(t)r(s, t)dsdt ≥ 0.

Proof. The symmetry of r comes from the symmetry of the covariance. For
the non-negative de�niteness, take f ∈ L2 ([0, 1]), and notice that the inte-
gral (2.5) is absolutely convergent, hence by Fubini's Theorem,∫∫

[0,1]2
f(s)f(t)r(s, t)dsdt =

∫∫
[0,1]2

f(s)f(t)E [XsXt] dsdt

= E
[∫ 1

0

f(s)Xsds

∫ 1

0

f(t)Xtdt

]
≥ 0.

So for any process X satisfying (2.4), the covariance function of X is
symmetric and non-negative de�nite real function of two variables. Now a
question we should ask ourselves is whether, given a symmetric, non-negative
function r(s, t) sa�sfying (2.4), there exists a Gaussian process with mean
zero and covariance function r(s, t). The answer is yes:

Proposition 2.4.4. For any r ∈ L2 ([0, 1]× [0, 1]) symmetric and non-
negative de�nite satisfying (2.4), there exists a mean-zero Gaussian process
X with values in L2 ([0, 1]) with covariance function r.

Proof. First, notice that the covariance function r(s, t) entirely determines
the �nite dimensinal distributions of a Gaussian process X with mean zero,
and this fact tells us that the r(s, t) de�nes a projective familly of Gaussian
measures (with mean zero) on the �nite dimensional distributions. Hence
by the Kolmogorov existence Theorem 2.2.4, there exists a Gaussian process
with mean zero and covariance r(s, t).

Now let us give the most famous example of Gaussian process, Brownian
motion.

Example 2.4.5 (Brownian motion). Brownian motion, or the Wiener pro-
cess on [0, 1] is an R-valued random process (Wt, t ∈ [0, 1]) such that

(i) W0 = 0,

(ii) P {ω : t 7→ Wt(ω) is continuous} = 1,

40/123



2.4 Gaussian Processes

(iii) Wt has independent increments, which means that 0 ≤ t1 < t2 ≤ t3 <
t4 ≤ 1 implies that Wt4 −Wt3 and Wt2 −Wt1 are independent,

(iv) Wt −Ws ∼ N (0, t− s) for all 0 ≤ s < t ≤ 1.

Let us see that Brownian motion is a Gaussian process. Take α1, . . . , αn ∈ R
and t1, . . . , tn ≥ 0. Without loss of generality, we can assume that ti < ti+1.
We need to show that the real-valued random variable Z =

∑
i αiWti is

Gaussian, and that E
[∫ 1

0
W 2
t dt
]
<∞ . Rewriting Z yields

Z =
n∑
i=1

(αi + αi+1 + · · ·+ αn)(Wti −Wti−1
),

where t0 = 0. But this is a sum of independent Gaussians, and hence is
Gaussian. Now we compute

E
[
W 2
t

]
= E

[
W 2
t

]
= t <∞,

and a simple computation shows that r(s, t) = min(s, t) is continuous. We
have shown that Brownian motion is a Gaussian process. J

We would now like to have a result similar to the orthogonal decompo-
sition for Gaussian random vectors given in Proposition 2.3.2. Recall that
this decomposition was obtained by looking at the covariance matrix Σ as
an operator. Hence it is natural to do the same here:

De�nition 2.4.6 (Covariance operator). Let r(s, t) = E [XsXt] be the co-
variance function of a centered (Gaussian) process X. Then we de�ne the
covariance operator RX : L2 ([0, 1])→ L2 ([0, 1]) by

RXf(s) =

∫ 1

0

r(s, t)f(t)dt.

¸

We will omit the subscript X and just write R for the covariance operator
of X, whenever this doesn't create any confusion. The next proposition gives
some properties of the covariance operator. It turns out that the covariance
operator is very well behaved:

Proposition 2.4.7. The covariance operator R is a bounded, linear, self-
adjoint, compact, Hilbert-Schmidt and nuclear operator.
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Proof. Self-adjointness is a direct consequence of r being symmetric and tak-
ing real values. That the covariance operator is Hilbert-Schmidt is a conse-
quence of R being an integral operator (see Theorem 1.5.11) and hence we
also have compactness. Now nuclearity is given by Corollary 2.4.9, which is
the consequence of the following important Theorem.

Lemma 2.4.8 (Mercer's Theorem). Let r(s, t) be a continuous on [0, 1] ×
[0, 1]. Then there exists a sequence (ϕn) of continuous functions over [0, 1],
and a decreasing sequence (λn) of positive numbers such that

(2.6) r(s, t) =
∞∑
n=0

λnϕn(s)ϕn(t), s, t ∈ [0, 1],

where the series converges uniformily and absolutely on [0, 1]× [0, 1]. More-
over, the sequence (ϕn) is orthogonal, in the sense that

(2.7)

∫ 1

0

ϕn(s)ϕm(s)ds = δn,m =

{
1 if n = m,

0 if n 6= m

and (ϕn) is a sequence of eigenvectors of the covariance operator, with asso-
ciated eigenvalues (λn). That is,

(2.8)

∫ 1

0

r(s, t)ϕn(s)ds = λnϕn(t), t ∈ [0, 1], n ∈ N.

Proof. See Zaanen (1953, p.534)

Corollary 2.4.9. The covariance operator R is a nuclear operator.

Proof. Let (λn) and (ϕn) be as in Mercer's Theorem, and notice that

λn =

∫ 1

0

λnϕn(s)ϕn(s)ds,

and hence, because the convergence of (2.6) is absolute, by the bounded
convergence Theorem:∑

n∈N

λn =

∫ 1

0

∑
n∈N

λnϕn(s)ϕn(s)ds =

∫ 1

0

r(s, s)ds <∞.

This result holds also without the assumption of continuity of the covari-
ance function r(s, t), and will be shown in Proposition 2.5.9.

We may now state a decomposition Theorem for Gaussian Processes, anal-
ogous to the decomposition for Gaussian random vectors (given by Proposi-
tion 2.3.2). In fact, a similar Theorem holds for more general processes, as
will be seen in Remark 2.4.11.
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Theorem 2.4.10 (Karhunen-Loève (K.L.) expansion). Let X = (Xt, t ∈
[0, 1]) be a Gaussian process with continuous covariance function r. Then

(2.9) Xt =
∞∑
n=0

znϕn(t), t ∈ [0, 1],

where the convergence is uniform in L2(Ω,O,P),

sup
t∈[0,1]

E

(
Xt −

n∑
k=0

zkϕk(t)

)2

n→∞−→ 0,

and where (zn) is a sequence of real zero-mean random variables satisfying

E [znzm] = λnδn,m, n,m ∈ N.

The (ϕn) and (λn) are given by Mercer's Theorem, and (zn) is given by

(2.10) zn =

∫ 1

0

Xtϕn(t)dt (a.s.), n ∈ N.

Moreover, the zn's are independent Gaussian variables.

Proof. See Bosq (2000, p.25) for a proof a the Theorem. The last statement
is a consequence of Theorem 2.7.6.

Remark 2.4.11. The Karhunen-Loève (K.L.) expansion also holds with the
only assumption that the covariance function r(s, t) is continuous (Gihman
& Skorohod 1974, p.226). We then have the same decomposition

Xt =
∞∑
n=0

znϕn(t), t ∈ [0, 1],

where the convergence is uniform in L2(Ω,O,P), except that the zn's are just
uncorrolated, and not necessarily independent. l

Now let us show an application of the K.L. expansion to Brownian motion:

Example 2.4.12. Recall that Brownian motion (Wt, t ∈ [0, 1]), de�ned in
example 2.4.5, is a Gaussian process with covariance function

r(s, t) = min(s, t).

We will now give the K.L. expansion of Brownian motion. First, we need to
solve the equation

λϕ(t) =

∫ 1

0

r(s, t)ϕ(s)ds,
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which simpli�es to

λϕ(t) =

∫ t

0

sϕ(s)ds+ t

∫ 1

t

ϕ(s)ds.

Now we di�erentiate twice with respect to t and obtain the second order
di�erential equation

λϕ′′(t) = −ϕ(t)

with general solution ϕ(t) = A cos(ηt) +B sin(ηt), with η = 1/
√
λ. With the

initial conditions

ϕ(0) =
1

λ

∫ 1

0

r(s, 0)ϕ(s)ds = 0

ϕ′(0) =
1

λ

∫ 1

1

ϕ(s)ds = 0,

we �nd

λn =

(
2

π(2n+ 1)

)2

, n ∈ N

and

ϕn(t) =
√

2 sin

(
π(2n+ 1)

2
t

)
.

Thus the K.L. expansion of Brownian motion on [0, 1] is given by

(2.11) Wt =
∑
n∈N

zn
√

2 sin

(
π(2n+ 1)

2
t

)
,

with uniform convergence in L2(Ω,O,P), and where

zn =

∫ 1

0

Wt

√
2 sin

(
π(2n+ 1)

2
t

)
dt

are independent real-valued Gaussian random variables with mean zero and
variance λn. J

Notice the strength of the K.L. expansion: it can be used to see a Gaus-
sian process as a sum of independent Gaussian random variables, or as an
(in�nite!) linear combination of continuous functions (ϕn) with random in-
dependent Gaussian coe�cients. The K.L. expansion can also be used for
generating samples of a Gaussian process: for a given continuous covariance
function r, provided the ϕn's and λn's are known, one only needs to generate
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a (large) number N of independent N (0, 1) samples x1, . . . , xN in order to
obtain an approximate sample

(2.12) Wt(ω) ≈
N∑
n=1

√
λnxnϕn(t).

However, the problem is that in general, it is impossible to solve the integral
equations explicitly so as to �nd the ϕn's. Nevertheless, the K.L. expansion
allows us to construct a random (Gaussian) process with desirable smooth-
ness properties.

2.5 Basic Notions of Probabilities in Banach Spaces

Now that we have de�ned and given examples of Gaussian Processes, let us
brie�y introduce some basic notions of probability in Banach spaces, following
the exposition of Bosq (2000). These notions will be useful for understanding
the test for functional data that will be presented in Section 5, and are nec-
essary for the exposition of the stochastic convergence Theorems in Banach
spaces, that will be reviewed in the next section.

First, we look at what we already know: for a probability space (Ω,F , P ) ,
we de�ne a random vector as a measurable function Ω→ Rn. Now we could
imagine doing the same with a Banach space B and its Borel σ−algebra,
but this could lead to some complications (see Ledoux & Talagrand (1991,
chapter 2) for instance). However, such problems are solved if we consider
only separable Banach spaces:

De�nition 2.5.1. Let B be a separable Banach space with norm ‖ · ‖ and
Borel σ-algebra BB. Then a B-valued random variable (or B-random vari-
able) de�ned on a probability space (Ω,F , P ) is a measurable function

(Ω,F)→ (B,BB).

We will often write B-r.v. instead of B-random variable. ¸

Now we will give a criterion for a mapping (Ω,F) → (B,BB) to be a
B-r.v. Notice that the so-called cylindrical σ-algebra

CB = σ(x∗ : x∗ ∈ B∗)

is always included in the Borel σ-algebra: CB ⊆ BB, because x∗−1 (]a, b[) is
open in B for any a < b real. The separability of B actually implies that the
two σ-algebras are equal, and we have:
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Proposition 2.5.2 (Characterization of B-random variables). Let B be a
separable Banach space. Then X : (Ω,F)→ (B,BB) is a B-random variable
if, and only if x∗(X) is measurable for all x∗ ∈ B∗, where B∗ is the topological
dual of B.

This allows us to de�ne integrals of B-random variables:

De�nition 2.5.3. A B-r.v. X is said to be weakly integrable if x∗(X) is
integrable for all x∗ ∈ B∗, and if there exists an element EX ∈ B such that

(2.13) Ex∗(X) = x∗(EX), ∀x∗ ∈ B∗.

The element EX is called the weak expectation or weak integral of X, and is
usually written EX. ¸

A stronger notion is the following:

De�nition 2.5.4. A B-r.v. X is said to be integrable (or strongly integrable)
if E‖X‖ <∞. ¸

As one might guess, strong integrability implies the weak one.

Proposition 2.5.5. For any integrable B-r.v. X, there exists a sequence
(Xn)n of simple B-r.v. such that

lim
n→∞

E‖X −Xn‖ = 0,

and X is weakly integrable.

Proof. See (Bosq 2000, p.28).

Hence the following de�nition makes sense:

De�nition 2.5.6. If X is an integrable B-r.v. then EX is called the integral
or expectation of X and we also denote it by

∫
XdP. ¸

What does this de�nition tell us? If we look at random vectors, it co-
incides with the usual de�nition of the expectation. So it is simply a gen-
eralisation of the notion of expectation to Banach spaces. Notice that the
condition (2.13) is a commutativity condition, with our new notation:

Ex∗(X) = x∗ (EX) , ∀x∗ ∈ B∗.

In order to be able to de�ne what a Gaussian B-r.v. is, we need to de�ne
the covariance operator:
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De�nition 2.5.7. Let X be a B-r.v. such that E‖X‖2 < ∞ and EX = 0.
The covariance operator of X is a bounded linear operator CX : B∗ → B
de�ned by

CX(x∗) = E [x∗(X)X] , x∗ ∈ B∗.
If EX 6= 0, replace X by (X − EX) in the present de�nition. ¸

In the case B = H, a separable Hilbert space, the covariance operator
can be written using a tensor product:

Remark 2.5.8. Let H be a separable Hilbert space, and X be an H-valued
random variable such that E‖X‖2 <∞ and EX = 0. The covariance opera-
tor CX of X can be written as CX = E [X ⊗X] , which is de�ned by

E [X ⊗X] (f) = E [〈X, f〉X] , f ∈ H,

because of the identi�cation of H∗ and H (via a linear isometry). If EX 6= 0,
then replace X by (X − EX) in this formula. l

This way, CX is a linear operator on H, and it is in fact nuclear, as will
be shown in the next proposition:

Proposition 2.5.9. Let H be a separable Hilbert space, and X be an H-
valued random variable. If E‖X‖2 <∞, then the covariance operator CX of
X is nuclear, and

trace (CX) = E‖X −m‖2,

where m = EX. Furthermore, 〈CXf, f〉 ≥ 0 for all f ∈ H, that is, the
covariance operator is non-negative.

Proof. Let (ei) be a complete orthonormal sequence in H. First, assume that
m := EX = 0, then CX = E [X ⊗X] and we have

trace (CX) =
∑
i

〈CXei, ei〉

=
∑
i

〈E [〈X, ei〉X] , ei〉

=
∑
i

E〈〈X, ei〉X, ei〉

=
∑
i

E〈X, ei〉2

= E
∑
i

〈X, ei〉2

= E‖X‖2 <∞,
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where the permutation of the sum and the expectation is allowed because
the summands are positive. For the case m 6= 0, just repeat the same steps
with X −m instead of X, which yields

trace (CX) = E‖X −m‖2 <∞.

To show that CX is non-negative, �rst suppose that m = 0: let f ∈ H and
notice that

〈CXf, f〉 = 〈E [〈X, f〉X] , f〉
= E

[
〈X, f〉2

]
≥ 0,

where the second equality is justi�ed by (2.13) because

E ‖〈X, f〉X‖ ≤ ‖f‖ · E‖X‖2 <∞.

For the case m 6= 0, replacing X by (X − m) in each step yields the same
result.

Remark 2.5.10. The covariance operator is entirely determined by the co-
variance function cX : B∗ ×B∗ → R de�ned by

cX(x∗, y∗) = E [x∗(X)y∗(X)] , x∗, y∗ ∈ B∗.

l

Now let us de�ne the analogue of the characteristic functional for B-r.v.

De�nition 2.5.11. Let X be a B-r.v. such that E‖X‖2 <∞. The charac-
teristic functional of X is a mapping ϕX : B∗ → C de�ned by

ϕX(x∗) = E
[
eix
∗(X)

]
, x∗ ∈ B∗.

¸

The importance of the characteristic functional of a B-r.v. is that it
entirely determines its distribution. We can now give the de�nition of a
Gaussian B-r.v.

De�nition 2.5.12. A B-r.v. X is said to be Gaussian if E‖X‖2 <∞ and

(2.14) ϕX(x∗) = exp

(
ix∗(X)− 1

2
x∗ [CX(x∗)]

)
.

¸

We see that in the case B = Rd, it corresponds to our familiar notion of
characteristic function.
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2.6 Some Stochastic Convergence Theorems in Banach

Spaces

In the study of random variables, the (Strong) Law of Large Numbers ((S)LLN)
and the Central Limit Theorem (CLT) are of particular importance, for they
give the asymptotic behaviour of

(2.15) Sn =
n∑
k=1

X,

for i.i.d. random variables X1, . . . , Xn. Let us give in this section the ana-
logues for B-r.v. We �rst start with a weak law of large numbers. But �rst,
let us introduce some notation:

Notation 2.6.1. For a random variable X : Ω→ H, where H is a separable
Hilbert space, let us de�ne its L2(P)-norm

(2.16) ‖X‖L2(P) =
√

E [‖X‖2],

where ‖X‖2 = 〈X,X〉 is the norm in H.

Let us also de�ne weak convergence of probability measures for Banach
spaces:

De�nition 2.6.2. Let (µ, µn : n ≥ 1) be a family of probability measures
over (B,BB), where B is a separable Banach space. We say that (µn) con-
verges weakly to µ, written µn

w→ µ if

µn(A)→ µ(A) ∀A ∈ BB such that µ(∂A) = 0,

where ∂A is the boundary of A. ¸

We now de�ne the following types of stochastic convergences for B-
random variables:

De�nition 2.6.3. Let {Y, Yn : n ≥ 1} be a family of B-r.v. de�ned on a
probability space (Ω,A,P). The (classical) stochastic convergences in B are
de�ned by

1. (Yn) converges to Y almost surely, written Yn
a.s.→ Y , if

P
{
ω ∈ Ω : ‖Yn(ω)− Y (ω)‖ n→∞−→ 0

}
= 1.
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2. (Yn) converges to Y in probability, written Yn
p→ Y , if for all ε > 0,

P (‖Yn − Y ‖ > ε)
n→∞−→ 0.

3. (Yn) converges to Y in distribution, written Yn
d→ Y , if

PYn
w→ PY ,

where PY = P ◦ Y −1 : BB → [0, 1].

¸

The following lemma will be necessary for proving a weak law of large
numbers:

Lemma 2.6.4. Let H be a separable Hilbert space, and X, Y : Ω → H be
independent random variables s.t. ‖X‖L2(P) <∞, ‖Y ‖L2(P) <∞. Then
(i) E [〈X, Y 〉] = 〈EX,EY 〉,

Furthermore, if either EX = 0 or EY = 0, then

(ii) ‖X + Y ‖2
L2(P) = ‖X‖2

L2(P) + ‖Y ‖2
L2(P).

Proof. With the notation PX,Y (A) = P ((X, Y ) ∈ A) for a borel set A ⊂
H ×H, then

E [〈X, Y 〉] =

∫∫
H×H
〈x, y〉dPX,Y (x, y)

=

∫
H

(∫
H

〈x, y〉dPX(x)

)
dPY (y)

=

∫
H

E [〈X, y〉] dPY (y)

=

∫
H

〈EX, y〉dPY (y)

= E [〈EX, Y 〉] = 〈EX,EY 〉,

where the fourth and ultimate equality are justi�ed by (2.13). This proves
the assertion (i). The proof of (ii) is then a direct consequence:

‖X + Y ‖2
L2(P) = E

[
‖X + Y ‖2

]
= E

[
‖X‖2 + ‖Y ‖2 + 〈X, Y 〉+ 〈X, Y 〉

]
= E‖X‖2 + E‖Y ‖2 + E [〈X, Y 〉] + E [〈X, Y 〉]
= ‖X‖2

L2(P) + ‖Y ‖2
L2(P) + 〈EX,EY 〉+ 〈EX,EY 〉

= ‖X‖2
L2(P) + ‖Y ‖2

L2(P).
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Now let us give a Weak Law of Large Numbers:

Theorem 2.6.5 (Weak Law of Large Numbers). Let H be a separable Hilbert
space, and X : Ω → H be a random variable such that E‖X‖2 < ∞. If
X1, . . . , Xn are i.i.d. copies of X, then

X
p−→ m,

where m = EX and X = 1
n

∑n
i=1Xi.

Proof. It is enough to show that ‖X−m‖L2(P) → 0, because L2(P)-convergence
implies convergence in probability. First, notice that the random variables
Xi −m are independent, and that

‖Xi −m‖2
L2(P) = ‖X −m‖2

L2(P).

Let us calculate the L2(P)-norm of X −m:

∥∥X −m∥∥2

L2(P)
=

∥∥∥∥∥ 1

n

n∑
i=1

(Xi −m)

∥∥∥∥∥
2

L2(P)

=
1

n2

∥∥∥∥∥
n∑
i=1

(Xi −m)

∥∥∥∥∥
2

L2(P)

=
1

n2

n∑
i=1

‖Xi −m‖2
L2(P)

=
1

n
‖X −m‖2

L2(P) ,

where the penultimate equality comes from Lemma 2.6.4. We know that
‖X −m‖2

L2(P) = K <∞, and thus

∥∥X −m∥∥2

L2(P)
−→ 0,

which completes the proof.

As with the �nite-dimensional case, the law of large numbers actually
holds without the assumption of �nite second moment, and it can be shown
that the convergence with probability 1. This is called the Strong Law of
Large Numbers :
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Theorem 2.6.6 (Strong Law of Large Numbers). Let (Xi) be an i.i.d. se-
quence of B-r.v. such that E‖X1‖ <∞. Then

1

n

n∑
i=1

Xi
a.s.−→ EX1,

where Sn is de�ned in (2.15).

Proof. See Bosq (2000, p. 47)

The Central Limit Theorem does not hold in general for Banach spaces
when only assuming that E [‖X‖2] < ∞, and requires more assumptions.
However, the CLT always holds in separable Hilbert spaces:

Theorem 2.6.7. Let (Xi) be an i.i.d. sequence of H-random variables, where
H is a separable Hilbert space. Suppose E‖X1‖2 < ∞, let m = EX1 and
C = CX1 , the covariance operator of X1. Then

n−1/2

n∑
i=1

(Xi −m)
d−→ N,

where N ∼ N (0, C), that is, N is a Gaussian H-r.v. with mean zero and
covariance operator C.

Proof. See Bosq (2000, p. 51)

As an example, let us investigate some asymptotic properties of the sam-
ple covariance operator of H-valued i.i.d. random variables:

Example 2.6.8. Let H = L2 ([0, 1]) and for T ∈ L(H), de�ne ‖T‖H to be
the Hilbert-Schmidt norm of T . Let us de�ne

H = {T : H → H linear : ‖T‖H <∞} ,

the space of Hilbert-Schmidt operators on H. The space H is itself a sepa-
rable Hilbert space, with scalar product

〈A,B〉H =
∑
i∈N

〈Aei, Bei〉, A,B ∈ H,

where (ei) is an orthonormal basis ofH � see Proposition 1.5.10. Now suppose
that X is an H-valued random variable, such that E‖X‖4

H <∞, where ‖ ·‖H
is the norm on H, and suppose that X has mean zero (for simplicity) and
covariance operator Γ = E [X ⊗X] ∈ H, where E [X ⊗X] (f) = E [〈X, f〉X]
for f ∈ H.
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If X1, . . . , Xn are i.i.d. copies of X, we de�ne the empirical covariance
operator of X by

Γn =
1

n

n∑
i=1

Xi ⊗Xi

which is a random operator on H, or an H-random variable, de�ned by

Γnf =
1

n

n∑
i=1

〈Xi, f〉Xi, f ∈ H.

Let us write Yi = Xi ⊗ Xi for i = 1, . . . , n. The Yi's are i.i.d. H-valued
random variables, and if (ej) is a orthonormal basis of H, then

‖Y1‖2
H =

∞∑
j=1

‖Y1ej‖2 =
∞∑
j=1

‖(X1 ⊗X1)ej‖2

=
∞∑
j=1

〈X1, ej〉2‖X1‖2

= ‖X1‖2

∞∑
j=1

〈X1, ej〉2

= ‖X1‖4,

where the last equality comes from Parseval's formula (1.4). Thus E‖Y1‖2
H =

E‖X1‖4 < ∞. Also, EY1 = E [X1 ⊗X1] = E [X ⊗X] = Γ, because X1 has
the same distribution as X. Let us denote by C : H → H the covariance
operator of Y1, which is nuclear by Proposition 2.5.9, and thus a Hilbert-
Schmidt operator on the space H. Applying the central limit Theorem yields

√
n(Γn − Γ)

d−→ N,

where N ∼ N (0, C).
Let us compute the L2(P) Hilbert-Schmidt norm of Γn − Γ de�ned by

‖A‖L2(P) =
√

E‖A‖2
H, for an H-random variable A.

Using the notation Y(i) = X(i) ⊗X(i), an examination of the proof of Theo-
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rem 2.6.5 gives us

‖Γn − Γ‖2
L2(P) =

∥∥∥∥∥ 1

n

n∑
i=1

(Yi − EYi)

∥∥∥∥∥
2

L2(P)

=
1

n
‖Y − EY ‖2

L2(P)

=
1

n
E
[
‖Y − EY ‖2

H
]

=
1

n
E
[
trace

(
(Y − EY )

⊗
(Y − EY )

)]
=

1

n
trace

(
E
[
(Y − EY )

⊗
(Y − EY )

])
,

where for A,B ∈ H, we de�ne A
⊗

B : H → H by(
A
⊗

B
)
C = 〈A,C〉HB, C ∈ H.

Using Proposition 2.5.9, we have

‖Γn − Γ‖2
L2(P) =

1

n
E
[
‖Y − EY ‖2

H
]

≤ 1

n
E‖Y ‖2

H

=
1

n
E‖X‖4 <∞.

From this, we get the bound

‖Γn − Γ‖L2(P) ≤
1√
n

√
E‖X‖4,

thus the convergence of the empirical covariance operator to the true covari-
ance operator is of order n−1/2 with respect to the L2(P)-norm. J

2.7 Some Remarks on the De�nitions of Gaussian Pro-

cesses

The careful reader might have seen that the de�nition of Gaussian processes
is not immediately obviously compatible with the de�nition of Hilbert-space
valued Gaussian random variables, which we now recall:

De�nition 2.7.1. An H-valued random variable, or H-random variable is
a measurable function X : Ω → H, where (Ω,A) is a measurable space and
H is a separable Hilbert space with its Borel σ-algebra.

An H-value random variable X is called Gaussian if, for all h ∈ H, the
random variable 〈X, h〉 is a real-valued Gaussian random variable. ¸
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Now notice that the space L2 ([0, 1]) is an Hilbert space. So an L2 ([0, 1])-
valued Gaussian random variable would be de�ned as:

De�nition 2.7.2 (Cramér-Wold de�nition). An L2 ([0, 1])-valued Gaussian
random variable would be a random variable

(2.17) X : Ω→ H

such that for all f ∈ L2 ([0, 1]), the random variable Ω→ R de�ned by

(2.18) ω 7→ 〈X(ω), f〉 =

∫ 1

0

Xt(ω)f(t)dt

is Gaussian. ¸

Now the natural question that arises is how whether this latter de�nition
is compatible with our previous de�nition of Gaussian process (see de�ni-
tion 2.4.1). A subtlety is that the de�nition 2.7.2 would not give you a
properly de�ned process. Indeed, �x ω ∈ Ω. Then X(ω) ∈ L2 ([0, 1]), hence
it is an equivalence class of function, and therefore the expression Xt(ω) has
no meaning. But suppose we do not care this, and for each ω ∈ Ω, we pick
a function in the equivalence class of X(ω) (the purists will notice that the
axiom of choice needs to be used). Now we properly ask the question:

Question: Under which conditions do (2.19) and (2.20) coincide, where

n∑
i=1

aiXti is Gaussian ∀ti ∈ [0, 1],∀ai ∈ R,∀n ≥ 1.(2.19) ∫ 1

0

Xtf(t)dt is Gaussian ∀f ∈ L2 ([0, 1]) .(2.20)

We �rst need a de�nition:

De�nition 2.7.3. A Gaussian process (Xt, t ∈ [0, 1]) is called continuous in
the mean if

lim
h→0
‖Xt+h −Xt‖L2(P) = 0, ∀t ∈ [0, 1]

where ‖Xs‖L2(P) =
√

E [|Xs|2]. ¸

Notice that continuity in the mean is just the same thing as saying that
the function t→ Ξ is continuous with respect to the semi-norm ‖ · ‖L2(P) on
Ξ = {ξ : Ω → R | ξ is measurable}. Interestingly, continuity in the mean is
equivalent to the continuity of the covariance function:
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Proposition 2.7.4. A Gaussian process is continuous in the mean if, and
only if its covariance function is continuous.

Proof. See (Grenander 1981, p. 38).

We just need a technical result, which states that a random process which
is continuous in the mean can be well approximated by �step functions�:

Lemma 2.7.5. Let T = [0, 1] and (Ξ, ‖ · ‖) be a normed space. If X : T → Ξ
is continuous with respect to ‖ · ‖, then for all p > 0, ε > 0, there exists
0 = t0 < t1 < · · · < tn = 1 such that the random variable

Y (t) =
n∑
i=1

1[ti−1,ti)(t)Xti−1

satisties the inequality ∫
T

‖Xt − Y (t)‖pdt < ε,

where 1A is the indicator function of the set A.

Proof. Because the function X : T → Ξ is continuous with respect to ‖ · ‖
on the compact T , it is uniformly continuous on T . Hence ∃δ > 0 such
that ‖Xs − Xt‖p < ε whenever |s − t| < δ, s, t ∈ T . De�ne tj = jδ for
j = 0, . . . , n− 1, with n− 1 = b1/δc, and let tn = 1. Then tj − tj−1 ≤ δ for
all j = 1, . . . , n. Thus letting Yi = Xti−1

and Y (t) =
∑n

i=1 1[ti−1,ti)(t)Yi, we
have ∫

T

‖X(t)− Y (t)‖p =
n∑
i=1

∫ ti

ti−1

‖X(t)− Yi‖pdt ≤
n∑
i=1

∫ ti

ti−1

εdt = ε,

and the proof is complete.

Just before giving our next Theorem, let introduce some notation: given
a stochastic process (Xt, t ∈ [0, 1]), we de�ne L2(X) as the completion of{

n∑
i=1

aiXti : ti ∈ [0, 1], ai ∈ R, n ∈ N.

}

under the norm ‖ · ‖L2(P) de�ned in de�nition 2.7.3. Now a fact we are going
to use is that if X is a Gaussian process (with respect to (2.19)), then any
v ∈ L2(X) is a Gaussian random variable, possibly degenerate. Now we can
give a result:
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Theorem 2.7.6. Let X be a process with values in L2 ([0, 1])which is con-
tinuous in the mean. Then the conditions

(2.21)
n∑
i=1

aiXti is Gaussian; ∀ti ∈ [0, 1],∀ai ∈ R,∀n ≥ 1.

and

(2.22)

∫ 1

0

Xtf(t)dt is Gaussian, ∀f ∈ L2 ([0, 1]) .

are equivalent.

Proof. First suppose that (2.21) holds. The idea is to show that for any

f ∈ L2 ([0, 1]), 〈X, f〉 =
∫ 1

0
Xtf(t)dt is in L2(X). We will show that for any

ε > 0, there is a �step function� Y (t) =
∑n

i=1 1Ii(t)Xti−1
with

‖〈X, f〉 − 〈Y, f〉‖L2(P) < ε,

and this will complete the proof, for

〈Y, f〉 =
n∑
i=1

(∫
Ii

f(t)dt

)
Xti−1

∈ L2(X).

The Ii are subintervals of [0, 1] of the form [a, b).
Let us begin: take f ∈ L2 ([0, 1]), and assume without loss of generality

that ‖f‖ > 0. Here we will use the notation ‖f‖2 =
∫ 1

0
f 2(t)dt for f ∈

L2 ([0, 1]) and ‖v‖L2(P) =
√

E [|v|2] for v a real-valued random variable. Fix
ε > 0 and take t0 < t1 < · · · < tn and Y as given by lemma 2.7 such that∫ 1

0

‖Xt − Y (t)‖2
L2(P)dt <

ε2

‖f‖2
.

Then

‖〈X, f〉 − 〈Y, f〉‖2
L2(P) = E

[(
(〈X − Y, f〉)2

)]
≤ E

[
‖X − Y ‖2‖f‖2

]
= ‖f‖2E

[∫ 1

0

(Xt − Y (t))2dt

]
= ‖f‖2

∫ 1

0

E [Xt − Y (t)]2 dt

= ‖f‖2

∫ 1

0

‖Xt − Y (t)‖2
L2(P)dt

≤ ‖f‖2 ε2

‖f‖2
= ε2,
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where the �rst inequality comes from the Cauchy-Schwarz inequality, and
the inversion of integrals is legitimate because the summand in positive.

Conversely, suppose that (2.22) holds. We are going to use the K.L.
expansion (which holds for any process with continuous covariance function)
to write

Xt =
∞∑
n=1

ξnϕn(t),

where the ξn's are uncorrolated random variables, and the convergence is
uniform in L2(Ω), meaning that

(2.23) sup
t∈[0,1]

‖fN(t)−Xt‖L2(P)

N→∞−→ 0,

where we used the notation fN(t) =
∑N

n=1 ξnϕn(t). Now take k ∈ N,
t1, . . . , tk ∈ [0, 1] and let B =

∑m
j=1 αjXtj and AN =

∑m
j=1 αjfN(tj), where

the αj's are real numbers, and notice that

k∑
j=1

αjfN(tj) =
N∑
n=1

(
k∑
j=1

αjϕn(tj)

)
ξn

is a Gaussian random variable. Also notice that (2.23) implies that for all N
large enough,∥∥∥∥∥

N∑
j=1

αjfN(tj)

∥∥∥∥∥
L2(P)

≤
N∑
j=1

|αj| ‖fN(tj)‖L2(P) <∞.

Hence the limit of AN under ‖·‖L2(P) exists and is a Gaussian random variable.
Finally, we show that this limit is B, and the proof will be complete. Let
ε > 0 and take N such that supt ‖fN(t) − Xt‖L2(P) <

εPm
j=1 |αj |

, where the

supremum is taken over [0, 1]. Then by the triangle inequality∥∥∥∥∥
m∑
j=1

αjfN(tj)−
m∑
j=1

αjXtj

∥∥∥∥∥
L2(P)

≤
m∑
j=1

|αj|‖fN(tj)−Xtj‖L2(P) < ε,

and the proof is complete.

Conclusions

In this section, we have presented fundamentals of probability in abstract
spaces. We have �rst seen the product measure spaces, and their analogies
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with the product topological spaces. This was a necessary step to talk of ran-
dom processes, and to understand how the �nite dimensional distributions
de�ne the distribution of a random process, which is in some sense an in�-
nite dimensional random vector. We then reviewed some basic properties of
Gaussian random vectors, and introduced Gaussian processes. Remarkably,
we saw that the property of orthogonal decomposition of Gaussian random
vectors extends naturally to their in�nite dimensional analogue, provided
some regularity conditions on the process are met � namely continuity in
the mean of the process. This was given by the Karhunen-Loève expansion,
whose use will be central in Section 5.

We then focused on some more abstract concepts, presented some notions
of probabilities on Banach spaces, and reviewed some of the principal stochas-
tic convergence Theorems in Banach spaces. We saw that the Strong Law of
Large Numbers always holds in Banach Spaces, but that the Central Limit
Theorem needs � in general � stronger assumptions than only E‖X‖2 < ∞.
However, this assumption su�ces when we restrict ourselves to Hilbert space
valued random variables.

Eventually, we concluded with some remarks concerning the de�nition
of Gaussian random processes. The motivation of this part was that Gaus-
sian processes were introduced usually by stating they are random process
such that their �nite dimensional distributions are Gaussian. However, we
can also think of a Gaussian process as a random variable with values in a
Hilbert space, say L2 ([0, 1]). Then we could also argue that the use of the
Cramér-Wold de�nition is legitimate (see De�nitions 2.5.12 and 2.7.2). We
thus attempted to understand the di�erence between these two de�nitions.
It turned out that under the assumption of continuity in the mean of the
random process � which is an important assumption of the Karhunen-Loève
expansion � the two de�nitions coincide.
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3
Basic Aspects of Functional Data Analysis

Now that we have reviewed some Hilbert space theory, and presented some
topics of probability in abstract spaces, let us give a review of basic aspects of
functional data analysis, based on material in Ramsay & Silverman (2005).
This section is central to this report, because it introduces the techniques
that allow to transform raw discrete data into functional datum.

We are �rst going to introduce the main ideas for turning discrete data
into a functional datum: by using basis functions. We will present the least
squares representations, and brie�y talk about some other representation
techniques. Then we will introduce the notion of roughness penalization,
which is of particular importance due to the in�nite dimensional nature of
the data we are dealing with. A short presentation of registration of func-
tional data will follow, before giving an introduction to functional principal
component analysis (PCA) and regularized PCA. Eventually, we will present
the functional linear model, which is the in�nite dimensional analogue of a
regression model.

Functional data?

The notion of functional data is, by itself, a sort of oxymoron. Indeed,
any kind of data that can be gathered today is discrete. Suppose we are
measuring the height of a adolescent, from his 13th birthday, until his 20th.
Then even if we measure his height every minute, the data collected would
still be discrete: we would have (t0, y0), . . . (tn, yn), where ti denotes the time
at which the height was measured, and yi is the height at time ti.

On the other hand, �functional� means that the object considered is a
function of some continuous parameter. For instance, for the height of an
adolescent, we would consider x(t) to be his height at time t, varying contin-
uously from the 13th to the 20th birthday. Thus when speaking of functional
data, we assume that the data collected has an underlying structure, which
is a function with some regularity (we will be more precise soon). We assume
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the existence of a function, say x(t), and all we can see are snapshots of this
underlying function, plus some error. For our adolescent height example, this
would translate as

yi = x(ti) + εi, i = 0, . . . n

where εi is the measurement error, and x(t) is the underlying height function.

When is data functional?

A necessary condition for discrete data to be considered functional is that
the underlying function x should not to be too erratic; otherwise trying to
infer the function x would be an e�ort in vain. Thus we assume that x is
continuous, and that it possesses one or more derivatives Dx,D2x, . . . , Dmx.
Here D denotes the di�erential operator: (Dx)(t) = d

dt
x(t).

In many situations, we will want to infer the underlying function x, as
well as some of its derivatives � in such cases, the data is called functional,
for we need to assume the existence of x before thinking of its derivatives.
The mere consideration of data as multivariate wouldn't allow at all for such
inferences. For instance, we would like to estimate the acceleration D2x of
the height of our adolescent, and see when it attains its peak.

One might suggest that if the data are sampled very �nely (such as one
measurement a minute for the height), we could just use the forward di�er-
ence ∆jy = (yj+1 − yj)/(tj+1 − tj) to estimate the Dx(tj), and reiterate this
to estimate further derivatives Dmx(tj). However, this method doesn't give
good estimates of the derivatives Dmx because the in�uence of the errors ε
is ampli�ed enormously! This phenomenon will be explained in more detail
in Section 3.2.

3.1 From discrete to smooth functional data, without

penalization

Now we are going to see how to transform the raw discrete data into smooth
functions. The basic assumption is that x lies in a �nite dimensional subspace
V of a space of functions, say L2 ([0, 1]) for the sake of formalism. So to
infer x, we choose a basis (φk)k of V and write x(t) =

∑K
k=1 ckφk(t), where

K = dimV and ck ∈ R. Beware of not thinking that this implies that our
problem reduces to multivariate data analysis: the subspace V is unknown!
Hence almost all the complexity resides in the choice of V , or similarly in
the choice of the basis functions (φk). This is why we will often be talking
of representations of x.

The number K of basis functions is also unknown ; ideally, we will want
to have a small number K of basis functions, for this will:
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1. Allow better interpretation of the coe�cients,

2. Necessitate less computations, and

3. Allow to have better tests and con�dence intervals.

This basis function approach is advantageous, for it is computationally
adapted, and allows us to use the already existing matrix algebra language
for solving our problems.

The Choice of Basis Functions

First, we need to choose what kind of basis functions to use for representing x.
This choice depends on the nature of the data being analyzed: for instance,
if the data is periodic in nature � such as monthly temperatures � then a
truncated Fourier basis

1, sinωt, cosωt, . . . , sinNωt, cosNωt

would be appropriate. However, if no periodicity is assumed, then a B-spline
basis is often better. But �rst, let us explain brie�y what a spline is.

Spline functions

De�nition 3.1.1. Let t0 < t1 < · · · < tn and y0, y1, . . . , yn ∈ R. Then a
spline of order m passing through (tj, yj) is a function f : [t0, tn] → R such
that

1. f(tj) = yj, ∀j,

2. f|[tj ,tj+1] is a polynomial of degree m− 1, for all j,

3. f ∈ Cm−2([t0, tn]). ¸

Thus, a spline is a piecewise polynomial function, with smooth junctions.
That is, for each tj, the derivatives up to order m− 2 on the left and on the
right are equal. For instance, an order 4 (cubic) spline f would be piecewise
a cubic polynomial, with f, f ′ and f ′′ continuous.

The degrees of freedom of a spline are equal to the order of the polyno-
mials, plus the number of interior points on the interval. Using the notation
of de�nition 3.1.1, we have

(3.1) df(spline) = m+ n− 1.
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The distinct elements tj are called breakpoints. We can generalize the
notion of spline to a sequence τ0, . . . , τN , where not all τj's are distinct.
These numbers τj are called knots. This enables to get splines which don't
have the same level of regularity at each point. However, we will refer the
interested reader to De Boor (2001) for more details.

For a �xed sequence (tj) of breakpoints, the set of all splines of order less
or equal to m is a real vector space, hence the notion of a basis for splines,
called B-spline basis, makes sense. As you might have guessed, the dimension
of this vector space is equal to the degrees of freedom given in (3.1). An
interesting property of the B-spline basis is that a basis function has support
in m or less subsequent intervals, which is important for the computation's
e�ciency.

Notice that for the Fourier basis, there is a canonical way of going from
a length K basis to a length K + 1 basis, and that is by adding a higher
frequency function to the basis. Hence for the Fourier basis, augmenting
the basis yields necessarily a better (�ner) representation of x. However, this
need not be true for the B-spline basis. If we take a new basis of length K+1
by cutting our interval [a, b] into intervals of same lengths, the representation
of x may be worse than with a shorter basis. This is because the (K +
1)-spaces of splines doesn't contain � in general � the space of K-splines.
However, if we just add one breakpoint to a sequence of breakpoints, the
generated (K + 1)-space of splines contains the previous one. Long story
made short: one must be careful when working with splines!

Representations Through Least Squares

Given a basis (e.g. Fourier or B-spline basis), we would like to �nd which lin-
ear combination of its elements represents the data in the best way. Formally,
our goal is to �nd the best representation of x with a given basis φ1, . . . , φK ,
in the sense that our representation x̂ minimizes ‖y− x̂‖2, for some measure
of �t ‖ · ‖.

We assume the collected data y1, . . . , yn follow the model

yj = x(tj) + εj, j = 1, . . . , n

and we use the vectorial notation

x(t) =
K∑
k=1

ckφk(t) = cTφ(t),

where c is the vector of coe�cients ck, and φ(t) = (φ1(t), . . . , φK(t))T.
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Ordinary Least Squares

One way of �nding the best �nite dimensional representation of x is to choose
c to minimize the sum of squared errors at each tj, which we will call SMSSE
to follow the notation of Ramsay & Silverman (2005). Thus we want to
minimize

(3.2) SMSSE(y|c) =
∑
j

(
yj −

∑
k

ckφk(tj)

)2

= (y −Φc)T(y −Φc),

where

Φ =

φ1(t1) φ2(t1) · · · φK(t1)
...

...
. . .

...
φ1(tn) φ2(tn) · · · φK(tN)

 .

Di�erentiation with respect to c yields that SMSSE(y|c) is minimized for

ĉ = (ΦTΦ)−1ΦTy,

provided the matrix Φ is of full rank. Thus the vector of �tted values is

ŷ = Φ(ΦTΦ)−1ΦTy.

Notice that the matrix Φ(ΦTΦ)−1ΦT de�nes an orthogonal projection Rn →
Rn ; thus the least squares representation is the orthogonal projection of the
data on the space spanned by the chosen basis.

Weighted Least Squares

A generalization of this method is useful when the errors εj are not assumed
to be i.i.d, but to have a covariance structure given by the matrix Σε. Then
it is better to use a weighted version of the SMSSE de�ned by

(3.3) SMSSE(y|c) = (y −Φc)TW(y −Φc),

where W = Σ−1
ε . Then we reach the minimum for

ĉ = (ΦTWΦ)−1ΦTWy.

However, when the complete matrix Σε is not estimable, we compromise by
assuming it is diagonal.
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Kernel Smoothing

Notice that these methods of �nding representations of x are linear in the
data, that is, x̂(t) = Sy for some matrix S, where x̂(t) = (x̂(t1), . . . , x̂(tn))T.
This motivates the notion of kernel smoothing : suppose that the true value
x(tj) is in�uenced more by values x(t) with |t−tj| small than for |t−tj| large.
Then we can use ideas of non-parametric density estimation to estimate x.
Using a kernel function κ(u), and de�ning Sj(t) to be a function of the kernel
which is decreasing in |t− tj|, we have the representation

x̂(t) =
n∑
j=1

Sj(t)yj.

That is, the value x(t) of the underlying x at time t is a linear combination
(average) of the local observations.

Localized Basis Function Representation

Another technique for choosing the representation of x is the Localized Basis
Function Representation, which consists in minimizing the sum of the errors
around t, for a �xed t. That is, we wish to minimize

SMSSEt(y|c) =
∑
j

wj(t) (yj − x̂(tj))
2 , x̂(tj) =

∑
k

ckφk(tj).

In matrix notation, this becomes

SMSSEt(y|c) = (y −Φc)TW(t)(y −Φc),

where W(t) is the diagonal matrix with elements (w1(t), . . . , wn(t)).
Visualizing this is not straightforward. To get some intuition, imagine

that wj(t) is a kernel function centered at tj. Now �x c and pick t̄, visualize
the plot of the points (tj, yj), the kernels wj(t) as well as the representation
cTφ(t). Now on top of t̄, look at the value of each kernel wj(t̄): it tells you
the fraction of error yj − x̂(tj) that you will take into account in the SMSSEt.

3.2 From discrete to smooth functional data, with rough-

ness penalization

Recall the Stein phenomenon (Stein 1956): for estimating the mean of n ≥ 3
independent Gaussian random variables X1, . . . , Xn, the Maximum Likeli-
hood Estimator (MLE) µ̂ = (X1, . . . , Xn) is inadmissible under a quadratic
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loss function, and a shrunken version of µ̂ dominates the MLE. Even if the
Xj's are not independent, the MLE is still dominated by a shrunken ver-
sion of itself (Ho�mann 2000). Knowing that shrinkage can be seen as the
solution to a penalized problem, we �nd here a heuristic for motivating the
present section, in which we are going to �nd the best representation of the
underlying function x, subject to some form of penalization.

Penalization is also crucial when we want to estimate the derivative Dx
of the underlying function. The reason lies in the fact that the di�erential
operator D is unbounded under the L2-norm (see example 1.3.9). We could
have a representation x̂ which is very close to the true x, in the sense that
‖x− x̂‖ < ε, but such that ‖Dx−Dx̂‖ is huge! Another way of seeing this is
in the frequency domain: suppose x̂(t) = x(t)+a sinNt, with a small, but N
very large. That is, x and x̂ di�er only by a high frequency: ‖x− x̂‖ is small,
but ‖Dx −Dx̂‖ is huge. Therefore we cannot estimate the derivatives of x
by using the ordinary least squares estimation, and penalization is necessary.

One other motivation for penalization � which is closely connected with
the Stein phenomenon � is the following: suppose we wish to �nd a repre-
sentation x̂ of x that minimizes the mean square error (MSE) at t, de�ned
by

MSE(x̂(t)) = E
[
(x̂(t)− x(t))2

]
= Bias2[x̂(t)] + Var[x̂(t)].

If a representation x̂ over�ts the observations yj, meaning that Bias2[x̂(t)] '
0, then the variance Var[x̂(tj)] will be very large. Indeed, the representation
x̂ will be too �wiggly� and sensitive to a small change in the data. Thus
to minimize the MSE, we have to allow for some bias in order to reduce
the variance. This is the well-known bias/variance trade-o�, and a way of
reducing the variance of x̂ is through penalization.

Penalized Sum of Square Errors for Estimating the Unknown Func-

tion

We would like penalize the representation x̂ for being too rough. But what is
roughness? Intuitively, the idea is to control how much the function �changes
direction� and �how fast� it does it. The direction of a function x, at each
point t, can be seen as the value of its derivative at this point: Dx(t). So the
variation of the direction would be given by the second derivative D2x(t), a
large value indicating fast changes in direction, and a smaller value (close to
0) meaning the function is almost linear in a neighborhood, and thus that
its direction doesn't change locally. So the roughness can be viewed as the
cumulative variation of the �rst derivative of g, and thus, we need to penalize
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for large values of

(3.4) PEN2(x) =

∫ [
D2x(t)

]2
dt.

Therefore, the penalized sum of square errors is

(3.5) PENSSEλ(y|x) = [y − x(t)]TW[y − x(t)] + λ · PEN2(x),

where W is a weight matrix. The parameter λ is a called a smoothing pa-
rameter, and controls the trade-o� between exact interpolation and a totally
smooth representation. If λ = 0, then (3.5) is just the same as the sum of
squared errors (3.3). If we let λ→∞, then the minimizer x̂ of (3.5) will be
a line x̂(t) = at+ b, and we would be doing linear regression.

In order to write (3.5) in the matrix algebra language, notice that if we
write x(t) = φ(t)Tc, then the linearity of the operator D2, of the integral
and the bilinearity of the matrix product yields

PEN2(x) = cTRc, (R)ij =

∫
D2φi(s)D

2φj(s)ds.

Thus

(3.6) PENSSEλ(y|c) = [y −Φc]TW[y −Φc] + λcTRc,

which is minimized for

(3.7) ĉ = (ΦTWΦ + λR)−1ΦTWy.

We see that this formula resembles the estimator obtained using ridge re-
gression.

A special case of (3.5) is when W = I, the identity matrix. Remarkably,
the minimizer of this problem among all functions x with continuous second
derivative is a cubic spline with knots at t1, . . . , tn (Hastie & Tibshirani 1990,
p.27).

Penalization for Other Estimators

The idea in the previous section was to penalize the roughness of the repre-
sentation x̂, in the sense of PEN2(x̂) =

∫
(D2x̂(t))2dt. But there is no reason

why we would restrain ourselves to only this kind of penalization. If we wish
to estimate the acceleration D2x, it will be of no use to penalize PEN2(x̂);
instead, it would be preferable to penalize PEN4(x̂) =

∫
(D4x̂(t))2dt, that is,

the roughness of D2x̂. More generally, we could replace PEN2(x) in (3.5) by
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PENm(x) =
∫

(Dmx̂(t))2dt for a certain m. Even more generally, we could
wish to penalize the magnitude of some functional Lx̂ of the representation
(L will often be a di�erential operator), and thus we would penalize∫

(Lx̂(t))2dt = ‖Lx̂‖2,

where ‖ · ‖ denotes the L2-norm. Notice that this setup generalizes the
previous ones.

How to Choose the Smoothing Parameter?

A method for choosing λ is the so-called cross-validation method, or CV
method. To really understand why the method is so usefull, notice that the
ideal λ could be known only if we knew the real underlying function x, which
we don't know of course. Now suppose we have a representation x̂ of x,
and we are given a new measurement (tj, yj). Then we can see how well our
representation x̂ would have predicted this new data point. Now recall that
our representation depends actually on λ, hence we have a representation x̂λ
for each λ. We could thus choose the λ for which x̂λ gives the best prediction
in expectation of the new data point (tj, yj). In essence this is the idea behind
cross-validation!

However, we do not often get new data points, so we will leave one obser-
vation (tj, yj) out of our data set, compute the smoothed representation, and
then look at the prediction error for (tj, yj). In fact, we will, turn by turn,
leave one observation out, and compute for each �incomplete� data sample
the smoothed representation, and then the prediction error of the removed
observation. If we sum all these prediction errors, and minimize them with
respect to λ, we have our method for choosing the smoothing parameter. This
will yield the representation that gives the best prediction (in expectation)
of new data points.

In a more condensed and explicit form, we have to �nd λ that minimizes

(3.8)
n∑
j=1

(
yj − x̂(j)

λ (tj)
)2

,

where x̂
(j)
λ is the representation obtained using (3.7) by leaving (tj, yj) out of

our data set.
More general (and sophisticated) procedures exist to �nd the smoothing

parameter � such as the generalized cross-validation method. We refer the
reader to Ramsay & Silverman (2005, Section 5.4.3) for more details.
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3.3 Registration of functional data

Remark 3.3.1. From now on, we will suppose that the data is given to us
in functional form. l

Until now, we have assumed that the functional datum x̂ follows the
model x̂(t) = x(t) + ε(t), where x is the true underlying function, and ε is
the observation error. A problem that occurs in practice is that the observed
curves x1(t), . . . , xn(t) may di�er not only because of the error ε, but also
in a transformation of the parameter t. For instance, if we observe that the
height hj(t) of a few adolescents, the start of their growth peak will very
certainly not be at the exact time, and thus we need to change the tempo of
time in order to be able to retrieve jointly information from the hj's. In a
somewhat more formal setup, we assume that the data follows the model

(3.9) x̂(t) = x(h(t)) + ε(t),

where h is some random transformation of time, called the time-warping
function. The problem of �nding the registered curve x̂∗(t) = x̂(h−1(t)) is
called the registration problem. Of course, this problem � when considered
in the most general setup � is very complicated. So let us start by a simpler
model.

The shift registration model is the simplest model in the form (3.9) we
could imagine: we suppose h(t) = t − δ, where δ is some random variable.
Thus this is the same as saying that

xj(t) = x(t− δj) + ε(t),

with δj ∈ R unknown. We are interested in �nding x∗j(t) = xj(t+δj), and this
can be done by a least squares criterion similar to that presented in Ramsay
& Silverman (2005, Section 7.2.1), which we reproduce here.

De�ne µ̂(t) =
∑

j xj(t)/n, the sample mean curve. Now letting δ =
(δ1, . . . , δn), we de�ne

(3.10) REGSSE(µ̂, δ) =
n∑
j=1

∫
T

[x∗j(t)− µ̂(t)]2dt,

where x∗j(t) = xj(t + δj) and T is the time interval over which the sample
curves and the underlying are considered to be de�ned. As you certainly
have guessed, we will �nd δ that minimizes (3.10). But this will minimize
the di�erence with the sample mean curve µ̂, which itself was constructed
using the shifted sample curves xj. Hence we need to proceed iteratively:
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1. Compute µ̂ from x1, . . . , xn,

2. Find δ that minimizes REGSSE(µ̂, δ),

3. Set xj(t) = xj(t+ δj) for all j,

4. Go back to step 1.

Such a method is often called a Procrustes method, and in practice, the
process usually converges within one or two iterations.

One step towards more general time-warping functions is to use distin-
guishing or speci�c features of the curves xj in order to register them. For
instance, in our imaginary adolescent height data curves, we can identify the
�rst time-points tj at which the height accelerations D2hj are zero, that is

tj = inf
t∈T

{
D2hj(t) = 0

}
,

and use these points tj to register the height curves.
More generally, if m distinguishing landmarks appear in the curves xj at

the times tj,k, k = 1, . . . ,m, and if t0,k are the corresponding times in the
sample mean curve µ̂, we look for time-warping functions hi such that

� hj(t0,k) = tj,k, k = 1, . . . ,m,

� t 7→ hj(t) is a strictly increasing function.

The registered curves are thus x∗j(t) = xj(hj(t)). Often, linear interpolation
is used to de�ne hj in the intervals [t0,j, t0,j+1].

To push even further into generality, we can use the natural assumption
that h should be time increasing, and thus write

h(t) = C0 + C1

∫ t

a

expW (s)ds,

where the interval T is assumed to be of the form [a, b]. Another idea is to
use some sort of principal component analysis technique � we refer the reader
to (Ramsay & Silverman 2005, Sections 7.5, 7.6) for more details about this.

3.4 Principal Component Analysis

Principal component analysis (PCA) is a technique for �nding the main fea-
tures of some data set. We �rst introduce PCA for multivariate data, before
presenting PCA for functional data.
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PCA for Multivariate Data

The usual multivariate PCA technique is as follows: suppose you have n
vector observations x1, . . . ,xn ∈ Rp which are centered, in the sense that∑

j xj = 0, and you wish to �nd the principal direction in which they are
oriented, meaning that we look for the direction ξ for which the sample
variance of the random variables 〈ξ,xj〉 is maximized. This can be formulated
as the solution to the following maximization problem:

(3.11) ξ1 = argmax
ξ

{
1

n

∑
j

〈ξ,xj〉2 : ξ ∈ Sp−1

}
,

where 〈·, ·〉 and ‖ · ‖ are the scalar product, respectively the norm, in Rp, and

Sp−1 = {x ∈ Rp : ‖x‖ = 1},

is the unit sphere in Rp.
Now we can continue and �nd the next principal directions of the data,

by solving iteratively
(3.12)

ξk = argmax
ξ

{
1

n

∑
j

〈ξ,xj〉2 : ξ ∈ Sp−1, 〈ξ, ξl〉 = 0 for l = 1, . . . , k − 1

}
,

for k = 2, . . . , p. That is, we look for the principal directions in the space
orthogonal to ξ1, . . . , ξk−1. The ξk's are called the principal components of
the data.

PCA for Functional Data

A motivation for functional PCA is that it gives a the orthonormal basis
that approximates, for a given truncation level K, the sample curves as
closely as possible. We can easily generalize the idea of multivariate principal
component analysis to curves (functional data) x1, . . . , xn. Now our vectors
are functions, and hence the �rst principal component will be a function ξ1(t)
which solves the variational problem

(3.13) ξ1 = argmax
ξ

{
1

n

∑
j

〈ξ, xj〉2 : ‖ξ‖2 = 1

}
,

where 〈·, ·〉 is the L2 scalar product 〈ξ1, xj〉 =
∫
ξ1(t)xj(t)dt and ‖ · ‖ is the

norm it de�nes. Naturally, the other principal components are de�ned in a
way similar to (3.12).
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PCA : An Eigenanalysis Approach

Now assume that we observe n vector observations xj = (xj1, . . . , xjp), j =
1, . . . , n, that have mean zero, in the sense that

∑
j xjl/n = 0 for all l, and

let X be the n × p matrix with components Xjl = xjl. Then our �rst PCA
problem can be rewritten as

ξ1 = argmax
ξ

{
n−1ξTXTXξ : ξ ∈ Sp−1

}
,

or more simply, if one de�nes the sample covariance matrix V = n−1XTX,
by

ξ1 = argmax
ξ

{
ξTVξ : ξ ∈ Sp−1

}
.

The solution to this problem is found by �nding the eigenvector of the matrix
V with largest eigenvalue, that is

(3.14) ξ1 = argmax
ξ

{
ρ : Vξ = ρξ, ξ ∈ Sp−1

}
,

and similarly for the remaining components. Notice that we are assured
that the right-hand-side set of (3.14) is non-empty because V is a symmetric
matrix.

As you might have guessed, in analogy with the multivariate case, the
functional PCA is just a truncation of an empirical Karhunen-Loève expan-
sion (see Theorem 2.4.10). That is, de�ne the empirical covariance function

v(s, t) =
1

n

n∑
j=1

xj(s)xj(t),

and the covariance operator V ξ(s) =
∫
v(s, t)ξ(t)dt, which is the integral

operator with kernel function v(s, t). Then the �rst principal component is

(3.15) ξ1 = argmax
ξ

{ρ : V ξ = ρξ} .

In practice, determination of the functional principal components requires
one to reduce the problem (3.15) to a matrix eigenanalysis problem. The two
main techniques are

1. Discretization of the functions;

2. Basis expansion.
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In the �rst method, the idea is to replace the function ξ by a vector ξ and
the integral operator V (covariance operator) by a sort of Riemann sum, and
thus reduce the problem to the form (3.14).

The second method involves writing the curves xi as linear combinations
of basis functions, and also reduces our problem to �nding an eigenvector of
a matrix. We refer the reader to Ramsay & Silverman (2005, Section 8.4)
for more details.

3.5 Regularized Principal Component Analysis

As we have done with smoothing functional data, we might apply the idea of
penalization to smooth the principal components, in order to avoid having
too rough ξk's. A motivation for doing so is the following: suppose we believe
that the true principal components of the underlying function x have some
level of smoothness. Then we would like the estimated principal component
to be also smooth, unlike with the standard PCA, which may yield very
rough components, as it is only trying to maximize the variance.

We will thus penalize for large values of PEN2(ξ), similarly to the penalized
least squares criterion. Our �rst principal component is thus the C2 function
ξ1 with L2-norm 1 that minimizes

(3.16) PCAPSV(ξ) =

∑
j〈ξ, xj〉

‖ξ‖2 + λ · PEN2(ξ)
,

where λ is the smoothing parameter. For λ = 0, this reduces to the stan-
dard functional PCA. Now for the following principal components, we also
maximize PCAPSV, but with a modi�ed orthogonality condition: we require
that

(3.17)

∫
ξj(s)ξk(s)ds+

∫
D2ξj(s)D

2ξk(s)ds = 〈ξj, ξk〉+ 〈D2ξj, D
2ξk〉 = 0,

for j = 1, . . . , k − 1.

Remark 3.5.1. Notice that the left-hand side of (3.17) actually de�nes a
new inner product on the space of C2 functions, and that the ξj's are not too
far from L2-orthogonality, because

|〈D2ξj, D
2ξk〉| ≤ ‖D2ξj‖‖D2ξk‖,

by the Cauchy-Schwarz inequality. So, because ‖D2ξ‖ cannot be too large
(depending on λ of course), the scalar product |〈ξj, ξk〉| is not too large. l
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As with the usual PCA, the parameter λ can be chosen by cross-validation,
and the regularized PCA also reduces to an eigenanalysis problem.

Once registration, smoothing, and optimal �nite-dimensional approxima-
tion are established, one turns to the issue of doing statistics on functional
data. For instance, we can look at the in�nite dimensional analogues of a
regression model.

3.6 The Functional Linear Model

The Functional Linear Model (FLM) is just the generalization of a regression
model to in�nite dimensions. A very general model is

(3.18) y = Lx+ ε,

where L : H1 → H2 is a linear operator between two Hilbert spaces H1, H2,
and is called the functional predictor or explanatory functional. The vector
x ∈ H1 is called the parameter, y ∈ H2 is the response and ε ∈ H2 is the error.
The model (3.18) is called a functional linear model because the parameter
x ∈ H1 is functional.

The model (3.18) is too general to be studied as is. We therefore look at
special forms of (3.18), depending on H2 and on the form of the covariate
L : H1 → H2. In the sequel, we shall assume that H1 is a function space,
such as a product of L2 ([0, 1]) spaces for instance. The di�erent cases we are
going to consider are:

1. The response is functional and the covariate is a multivariate (a ma-
trix),

2. The response is functional, and the covariate is a (multivariate) multi-
plication operator,

3. The response is scalar, and the covariate is an integral operator,

4. The response is functional, and the covariate is an integral operator.

Functional Responses, Multivariate Covariates

Let us consider the case where

H2 =
(
L2 ([0, 1])

)n
= L2 ([0, 1])× L2 ([0, 1])× · · · × L2 ([0, 1]) ,

and H1 = (L2 ([0, 1]))
p
. The parameter and the response can be seen as

vectors y,x, with coe�cients in L2 ([0, 1]), and if we �x t ∈ [0, 1], then
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y(t) ∈ Rn and x(t) ∈ Rp. Hence any n×p matrix Z de�nes a linear operator
L between H1 and H2 by (Lx)(t) = Z · x(t).

In such cases, the covariate L is said to be multivariate, because L is not
a truly in�nite dimensional operator, and the FLM reduces to

(3.19) y(t) = Zx(t) + ε(t), ∀t ∈ [0, 1].

We seek to minimize the �tting criterion

(3.20) LMSSE(x) =

∫ 1

0

[y(t)− Zx(t)]T[y(t)− Zx(t)]dt.

If no particular assumption is made on the parameter function x(t), then
LMSSE(x) can be minimized by minimizing ‖y(t) − Zx(t)‖2 for each t. In
practice, we would choose a suitable grid of values of t and compute the
pointwise minimizers x̂(t) at each knot, and then interpolate between these
values.

Penalizing the parameter

The idea of regularization can be also applied here to the parameter x, in
order to prevent us from incorporating high frequencies which would account
for noise. In order to do so, we need some algebraic tools:

De�nition 3.6.1 (The Kronecker product). The Kronecker product of an
m × n matrix A with a p × q matrix B a matrix A ⊗ B of order mp × nq
consisting of submatrices aklB, explicitly

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
...

am1B am2B · · · amnB

 .

Let us also introduce the function vec (·) : Rm × Rn → Rmn which simply
writes a matrix in a column-wise form, namely,

vec (A) = (a11, a21, . . . , am1, a12, a22, . . . , am2, . . . , am(n−1), amn)T.

One use of the Kronecker product and the vec (·) function is that it allows
writing an equation of the form

AXB = C,

which cannot be seen directly as a system of linear equations, in the simpler
form

(BT ⊗A)vec (X) = vec (C) .
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This then yields the solution vec (X) = (BT ⊗A)−1vec (C), provided the
Kronecker product yields a regular matrix.

Notice also that the Kronecker product gives the matrix representation
of the tensor product of linear transformations on �nite dimensional spaces
� See Halmos (1974a, �52) for instance. ¸

Now we can give explicitly the formulas for �nding a minimizer of LMSSE(x)
with the basis approach: suppose without loss of generality the choice of the
same basis of functions φ1, . . . , φKy for y1, y2, . . . , yn, the component func-
tions of y, and that we write y(t) = Cφ(t), where φ is the column matrix
(φ1, . . . , φKy)

T and C is the n × Ky coe�cient matrix. Do the same for x̂,
the penalized minimizer of LMSSE(x), by writing x̂(t) = Bθ(t), where θ is
the column of basis functions for x̂.

We use a linear operator R for the roughness

PENR(x) =

∫
[Rx(t)]T[Rx(t)]dt =

∫
‖Rx(t)‖2dt,

and de�ne the matrices

Jφφ =

∫
φφT, Jθθ =

∫
θθT, Jφθ =

∫
φθT,(3.21)

and

R =

∫
[Rθ][Rθ]T,(3.22)

where the (t) and dt have been dropped for clarity. The solution to the
penalized least squares criterion

PENSSE(y|x) =

∫
‖Cφ− ZBθ‖2 + λ

∫
‖RBθ‖2,

is

(3.23) vec (B) = [(Jθθ + λR)⊗ (ZTZ)]−1vec
(
ZTCJφθ

)
,

where ‖ · ‖ stands for the 2-norm on Rn.

Functional Responses, Functional Covariates in the Concurrent

Model

A more general case of the FLM is when we still have H2 = (L2 ([0, 1]))
n

and H1 = (L2 ([0, 1]))
p
, but L : H1 → H2 is a multiplication operator, in the

sense that
(Lx)(t) = Z(t)x(t),
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where Z(t) is a n× p matrix for each t in the time interval. Hence the model
we have is

(3.24) y(t) = Z(t)x(t) + ε(t), ∀t ∈ [0, 1]

Such a model is called concurrent, because only the values of x at time t
in�uence the value of y(t).

The penalized �tting criterion is very similar to the model with multivari-
ate covariates, and an explicit equation can be written for the regularized x̂
when y and x are viewed in a basis expansion form. The level of complexity is
a little higher than for the multivariate case, and some numerical integration
is needed. We leave the interested reader to look at section 14.4 of Ramsay
& Silverman (2005).

FLM with Scalar Responses

Another class of functional linear models is the one where H2 = Rn, H1 =
(L2 ([0, 1]))

p
, and the operator L : H1 → H2 is de�ned by

Lx =

∫
Z(t)x(t)dt,

with Z(t) being an n× p matrix for each t. In the case n = 1, the operator
becomes

Lx =

∫ [ p∑
j=1

zj(t)xj(t)

]
dt =

p∑
j=1

∫
zj(t)xj(t)dt.

Hence the model we have is

(3.25) y =

∫
Z(t)x(t)dt+ ε.

This model is called the FLM with scalar responses.
Notice that in this model, it might be possible that the subspace of func-

tions {x : Lx = y} is in�nite dimensional. For instance, this is the case when
n = 1, p = 1: y =

∫
z(t)x(t)dt + ε and

∫
z2(t)dt > 0. Therefore, regulariza-

tion of the parameter x is crucial here!

Regularization with a function basis

For the sake of simplicity, let us assume here that p = 1, and hence our
model is

(3.26) yj =

∫
zj(t)x(t)dt, j = 1, . . . , n.
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We wish to minimize the penalized residual sum of squares

PENSSEλ(x) =
n∑
j=1

[
yj −

∫
zj(t)x(t)dt

]2

+ λ

∫
[Rx(t)]2dt,

where R is a roughness operator (as in section 3.6).
Let us write the parameter with respect to a function basis θ(t) =

(θ1(t), . . . , θKx(t))
T, thus having x(t) = θTb, where b is the coe�cient vector,

and Kx is the length of the basis. We also do the same for the covariates zj(t)
by writing Z(t) = Cφ(t), where C is the coe�cient matrix of size n × Kz,
and de�ne the matrices Jφθ and R as in (3.21) and (3.22), respectively. The
penalized residual sum of squares is then

PENSSEλ(x) = ‖y −CJφθb‖2 + λbTRb,

and is minimized for b solving the equation[
(CJφθ)

TCJφθ + λR
]
b = ZTy.

FLM for Functional Responses, with 2-parameters

In this model, we look at H1 = (L2([0, 1]× [0, 1]))
n
, H2 = (L2 ([0, 1]))

p
and

we assume that covariate L : H1 → H2 is an integral operator with kernel
being the parameter x(s, t) ∈ H1, de�ned by

(3.27) Lx =

∫
[Z(s)x(s, t)] ds,

where Z is the matrix of covariate functions zij(s), and our model becomes

(3.28) y(t) =

∫
[Z(s)x(s, t)] ds+ ε(t).

We shall call a parameter x(s, t) a 2-parameter to clearly emphasize the fact
that it is a vector of functions of two variables s and t.

We are going to consider the simpler case of (3.27) in which p = 1,
obtaining thus the simpli�ed model

(3.29) yj(t) =

∫
zj(s)x(s, t)ds+ εj(t), j = 1, . . . , n.

Our �tting criterion is

LMSSE(x) =
n∑
j=1

∫ [
yj(t)−

∫
zj(s)x(s, t)ds

]2

dt.
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As with the model (3.26), regularization is crucial in order to avoid over�tting
the data. Suppose the function x has a tensor product expansion

x(s, t) =

K1∑
j=1

K2∑
l=1

bklθl(s)ηj(t) = θ(s)TBη(t),

with respect to the basis functions ηj(t), θl(s). There are a few ways of
conducting regularization to obtain x̂:

1. By restricting the number of basis functions K1, K2,

2. By penalization of the roughness of the estimate x̂(s, t).

Let us give the computational details for the second method: let Rs and Rt

be two roughness operators for the �rst and second variable of x. Then the
penalties on x for each variable are given, respectively, by

PENs(x) =

∫∫
[Rsx(s, t)]2dsdt = trace

(
BTRBJηη

)
PENt(x) =

∫∫
[Rtx(s, t)]2dsdt = trace

(
BTJθθSB

)
,

where

R =

∫
[Rsθ(s)][Rsθ(s)]Tds,

S =

∫
[Rtη(t)][Rtη(t)]Tdt,

and the matrices Jηη,Jθθ are de�ned as in (3.21).
If we further express y = Cφ, as in section 3.6, then the regularized

estimate for B is
(3.30)

vec(B̂) =
[
Jηη ⊗ (ŽTŽ) + λsJηη ⊗R + λtS⊗ Jθθ

]−1
(Jθη ⊗ ŽT)vec (C) ,

where Ž =
∫

Z(s)θ(s)Tds and Z(s) = (z1(s), . . . , zn(s))T.

Remark 3.6.2. Notice that our expansion of x(s, t) is very specialized, as we
considered a tensor product expansion, and it could sometimes be better to
use an expansion using more general functions basis functions θj(s, t). Details
and further references about these can be found in Ramsay & Silverman
(2005, section 16.5). l
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3.6 The Functional Linear Model

Conclusions

In this section, we have seen what distinguishes functional data from mul-
tivariate data. We have presented the main ways of transforming discrete
data points into functional data, through the use of basis functions. Due to
the in�nite dimensional nature of functional datum, roughness penalization
was found to be necessary, especially for the estimation of the derivatives of
the underlying function. Then the basic ideas for registration of functional
data were presented, which correspond somehow to aligning the data. The
functional principal component analysis � that exhibits the main features of
a data set � was then introduced, together with its penalized version. This
section ended with the presentation of the in�nite dimensional analogues of a
regression model � the functional linear model � and we saw that the general
model was too complicated to be studied on its own; thus a few particular
instances where considered.
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4
Notions from Inverse Problems

Pertinent to Functional Data

So far, we have seen how to �t some basic statistical models, but would
like to use probability to conduct statistical inferences. For instance, when
is a functional linear model signi�cant? In order to achieve this goal, we
have seen some basic Hilbert space theory, fundamentals of probability in
abstract spaces, and also given an introduction to functional data. The last
preparation we need is to get familiar with the notion of ill-posed inverse
problems. An ill-posed inverse problem occurs essentially when we try to
invert a compact linear operator. Because the singular values of a compact
operator tend to zero, the inverse is an unbounded operator, making direct
inversion useless. The use of regularization techniques is therefore necessary,
and the present section is devoted to their introduction.

We will begin by introducing the notion of an ill-posed inverse problem,
and will present the simplest inverse problems: the Fredholm equations of
the �rst kind. We will then expose two methods for resolving such inverse
problems: Spectral Truncation, which is based on the SVD decomposition
of compact operators, and Tikhonov regularization, which is the in�nite di-
mensional analogue to Ridge regression. We will then end this section by
presenting a generalization of Tikhonov reguralization.

Let us begin with the de�nition of an ill-posed problem.

De�nition 4.0.3. A problem is called ill-posed if it is not well-posed. ¸

Of course, this de�nition is meaningless without the notion of well-posed
problem, which has been �rst suggested by Hadamard (1952). We give here
the de�nition by Tikhonov & Arsenin (1977).

De�nition 4.0.4. Let (U, dU) and (S, dS) be metric spaces, where U is called
the space of initial data, and S is the space of possible solutions. Given u ∈ U ,



4 NOTIONS FROM INVERSE PROBLEMS

the problem of �nding x ∈ S such that

u = G(x),

where G : S → U is some mapping is said to be well-posed on the pair of
metric spaces ((S, dS), (U, dU)) if the following conditions are satis�ed:

1. for every u ∈ U, there exists a unique solution x := R(u) ∈ S, where
R : U → S maps each initial condition to its unique solution,

2. the mapping R is continuous. ¸

Thus a well-posed problem is a problem with unique solutions, and where
this solution depends continuously on the data, meaning that a small enough
perturbation of the data will not radically change the solution.

Now we understand better the notion of ill-posed problem: it has either
multiple solutions for a given initial data, or small changes in the initial
data can yield signi�cant changes in the solution. In fact, these two concept
are closely related, especially in applied settings. Indeed, discontinuity of
the solution translates into non-uniqueness of the solution when numerical
computations are made (because of the limited numerical precision).

Nevertheless, we will only talk about this second kind of ill-posedness
in this section, and will mainly rely on the exposition given by Kaipio &
Somersalo (2005), unless speci�cally mentioned.

An inverse problem is the inverse of a direct problem. Though the no-
tion of direct problem doesn't have a formal de�nition, a way of having an
intuition is through some examples:

1. Finding the dilatation of the volume of quicksilver, knowing the change
in temperature ∆T .,

2. Describing the turbulences of the gases in a furnace (where the tem-
perature is high) from the knowledge of the furnace temperature,

3. Taking a photograph, and blurring it, which, mathematically, translates
to convolving a function with a smoothing kernel.

4. Generating data y(tj) = x(tj) + εj, for a mesh tj ∈ [0, 2π] for j =
1, . . . , n, and where x is a function with Fourier expansion (c0, c1, . . . , c2N)
with respect to the Fourier basis 1, sin(t), cos(t), . . . , sin(Nt), cos(Nt),
and where εj is iid Gaussian noise.

The following are the corresponding inverse problems:
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1. Finding the change in temperature ∆T from the knowledge of the
change in volume of quicksilver,

2. Finding the furnace temperature from the knowledge of the gas turbu-
lences in it,

3. Taking a blurred photograph and deblurring it,

4. Estimating the Fourier coe�cients (c0, . . . , c2N) given the perturbed
observations yj.

Remark 4.0.5. Often, inverse problems lead to ill-posed problems, and we
shall simply say that a problem is an inverse problem instead of saying it is
an ill-posed inverse problem. l

Here is a detailed example of an inverse problem:

Example 4.0.6. Imagine a rod of unit length and unit thermal conductivity,
with its ends at x = 0 and x = 1 that are set to a �xed temperature 0.
Physical theory tell us that the temperature u(x, t) of the point x on the rod
at time t must satisfy the heat equation

(4.1)
∂2u

∂t2
− ∂u

∂t
= 0, 0 < x < 1, t > 0,

and where the boundary conditions are

u(0, t) = u(1, t) = 0, u(x, 0) = u0(x), t ≥ 0, x ∈ [0, 1].

The inverse problem here is to estimate the initial condition u0(x) given the
temperature of the rod at a time T > 0.

Writing the solution of (4.1) in terms of a Fourier expansion yields

u(x, t) =
∞∑
n=1

cne
−(nπ)2t sinnπx,

where the coe�cients cn are the coe�cients of the Fourier sine series of the
initial condition:

u0(x) =
∞∑
n=1

cn sinnπx.

Thus we need to �nd the Fourier coe�cients of the �nal data. But this
problem is ill posed, because assume that we have two initial states u

(j)
0 (x),

for j = 1, 2 di�ering only by a high frequency, namely

u
(1)
0 (x)− u(2)

0 (x) = cN sinNπx,
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4 NOTIONS FROM INVERSE PROBLEMS

then the di�erence of temperatures at time T will be exponentially small:

u(1)(x, T )− u(2)(x, T ) = cNe
−(Nπ)T sinNπx.

Thus, the solution u0(x) of our problem is not continuous in the data u(x, T ), x ∈
[0, 1]: the problem is ill-posed. J

This example shows clearly that in presence of measurement errors, �nd-
ing a solution to an ill posed problem by the �usual� method will yield un-
interesting results. Indeed, noise in the measurements is usually assumed to
have the same variance over all frequencies, and thus we are almost guar-
anteed to have small perturbations in high frequencies. We therefore need
some other technique � via a regularization method � to try and solve inverse
problems.

4.1 Fredholm Equations of the First Kind

The two regularization methods we are going to present are easier to un-
derstand when they are applied to linear inverse problems called Fredholm
equation of the �rst kind. These sorts of inverse problems are similar to those
we will encounter with functional data.

De�nition 4.1.1. Let H1, H2 be Hilbert spaces, and A : H1 → H2 be a
compact linear operator. Given y ∈ H2, the problem of �nding x ∈ H1 such
that

(4.2) Ax = y

is called a Fredholm equation of the �rst kind. ¸

Because of the linearity of A, we know that a unique solution to (4.2)
exists if and only if y ∈ Im(A) and ker(A) = {0}. In practice, the vector y is
measured and contains some error. We have thus an approximate equation

Ax ≈ y,

and because the inverse of A, when de�ned, is rarely continuous (unless both
Hj's are �nite dimensional), we cannot take x ≈ A−1y as a solution. A way
of avoiding such a problem is through spectral truncation.

4.2 Spectral Truncation

Let us denote by 〈x, y〉j the scalar product in Hj. In order to understand
spectral truncation, we need to use the singular value decomposition of a
compact operator (Theorem 1.7.1), which we reformulate here for complete-
ness:
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4.2 Spectral Truncation

Proposition 4.2.1. Let H1, H2 be Hilbert spaces, A : H1 → H2 be a linear
compact operator and A∗ be the adjoint operator of A. Then

1. The spaces Hj allow the following orthogonal decompositions:

H1 = ker(A)⊕ ker(A)⊥ = ker(A)⊕ Im(A∗),

H2 = Im(A)⊕ Im(A)⊥ = Im(A)⊕ ker(A∗).

2. There exists orthonormal sequences (vn) ⊂ H1, (un) ⊂ H2 and a de-
creasing sequence of positive numbers (λn) with limn→∞ λn = 0 such
that

Im(A) = span{(un)}, (ker(A))⊥ = span{(vn)},

and the operator A has the representation

(4.3) Ax =
∑
n

λn〈x, vn〉1un.

The equation (4.3) is called the singular value decomposition (SVD)
of A, and the system (vn, un, λn) is called the singular system of the
operator A. We will often omit the subindex 1 for the scalar product in
(4.3) for notation simplicity.

3. The equation Ax = y has a solution if, and only if

y =
∑
n

〈y, un〉un,
∑
n

1

λ2
n

|〈y, un〉|2 <∞,

in which case the solutions of the equation are given by

(4.4) x = x0 +
∑
n

1

λn
〈y, un〉vn, x0 ∈ ker(A).

This proposition tells us that the orthogonal projection P : H2 → Im(A)
is de�ned by

Py =
∑
n

〈y, un〉un,

and hence we get the above bound for the error ‖Ax− y‖ of our estimate x
by the equation

‖Ax− y‖2 = ‖Ax− Py − (Id− P )y‖2

= ‖Ax− Py‖2 + ‖(Id− P )y‖2 ≥ ‖(Id− P )y‖2.
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4 NOTIONS FROM INVERSE PROBLEMS

Here Id is the identity operator on H2. Thus if the error ε on the measured
y has a non-zero component in the space orthogonal to Im(A), that is, (Id−
P )ε 6= 0, then the equation Ax = y cannot be solved exactly. The best we
can do is to solve the projected equation

Ax = Py.

But doing this doesn't guarantee that we can �nd a solution of the form
(4.4), because the convergence of the series is not guaranteed in the presence
of noise. Even if the series converges, the estimate might be very bad. Indeed,
assume that the true y is 0, and suppose we observe ŷ = KλNuN with K > 0
large. The error is ‖y− ŷ‖ = KλN , which can be made arbitrarily small for a
large N . However, the estimate will be x̂ = Kvn, and our error with respect
to the true x = 0 will be ‖x̂ − x‖ = K, which is large. Hence we see that
the problem of estimating the coe�cients of x ∈ ker(A)⊥ from the projected
data Py is an inverse problem by itself!

The problem comes from the fact that the sequence (λn) converges to 0:
if we think of coe�cients of y ∈ ker(A∗)⊥ in the (un) basis as frequencies,
with the higher frequencies being the coe�cients of un with larger n, then
we see that a small error in the higher frequencies of y yields a big error in
the estimated x, explicitly, an error of ε > 0 in the N th frequency of y gives
an error or ε/λN in the estimated x. Thus most of the error comes from the
high frequencies of y, and a natural way of overcoming this is to cut out these
high frequencies, in other words to truncate the spectrum of y, and hence the
term spectral truncation.

More rigorously, we are going to solve the problem

(4.5) Ax = Pky, k ∈ N,

where Pk : H2 → span{u1, . . . , uk} is the orthogonal projection de�ned by
Pky =

∑k
n=1〈y, un〉un. This yields the solutions

(4.6) xk = x0 +
k∑

n=1

1

λn
〈y, un〉vn, x0 ∈ ker(A),

to equation (4.5). Notice that the distance between Axk and Py is decreasing
in k, namely

‖Axk − Py‖2 = ‖(Pk − P )y‖2 =
∞∑

n=k+1

|〈y, un〉|2 → 0.
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4.3 Tikhonov Regularization

The last problem we have to tackle is the possible non-injectivity of A. By
orthogonality, notice that

‖xk‖2 = ‖x0‖2 +
k∑

n=1

1

λ2
n

|〈y, un〉vn|2 ≤
k∑

n=1

1

λ2
n

|〈y, un〉vn|2.

Hence a consistent way of choosing xk is to pick the unique one that is in
ker(A)⊥, or equivalently, the one with minimal norm. This leads to the
following de�nition:

De�nition 4.2.2. Let A : H1 → H2 be a compact operator with singular
system (vn, un, λn). By the truncated SVD approximation (TSVD) of the
problem Ax = y, we mean the problem of �nding x ∈ H1 such that

Ax = Pky, x ⊥ ker(A),

for some k ≤ 1. ¸

We have already seen that the solution to the TSVD problem is given by

xk =
k∑

n=1

1

λn
〈y, un〉vn.

The choice of the truncation parameter k is crucial in the TSVD. If the
noise is assumed to be random, then techniques such as cross-validation or a
version of the Akaike Information Criterion (Yao et al. 2005, Section 2.5) can
be used. However, if an exact noise level is known, the discrepancy principle
can be used. It states that we should not attempt to be more precise than
the noise level. That is, if we now that the noise is roughly ε, namely

‖y − ŷ‖ ≈ ε,

where ŷ is the observation of the true y, then we should pick k to be the
smallest integer such that

‖Py − Pky‖ ≤ ε.

4.3 Tikhonov Regularization

As discussed in page 88, we have seen that the problem of ill-posedness comes
from the λn tending to zero when n → ∞, and this makes the norm of our
estimate grow to in�nity as k → ∞. The idea of Tikhonov regularization is
to try to minimize the norm of r = y − Ax by putting a constraint on the

89/123



4 NOTIONS FROM INVERSE PROBLEMS

norm of x. This is similar to what is done in Stein estimation, when the
MLE is shrunken towards the origin.

Hence we look at the problem

(4.7) min
x
‖y − Ax‖2 such that ‖x‖2 ≤M,

for M ≤ 0, provided a minimizer exists. The Lagrange form of this problem
is

(4.8) min
x

{
‖y − Ax‖2 + δ‖x‖2

}
,

for a δ ≥ 0. This motivates the following de�nition:

De�nition 4.3.1. Let δ > 0. The Tikhonov regularized solution xδ ∈ H1 is
the minimizer of the functional

Fδ(x) = ‖y − Ax‖2 + δ‖x‖2,

provided such a minimizer exists. The parameter δ is called the regularization
parameter. ¸

Notice that Tikhonov regularization is the same as Ridge regression when
A is a matrix and x, y are vectors. The good news about the Tikhonov
regularized solution is that there is a closed-form formula for computing it,
which is given by the following Theorem.

Theorem 4.3.2. Let A : H1 → H2 be a compact operator with singular
system (vn, un, λn). Then the Tikhonov regularized solution exists, is unique,
and is given by the formula

(4.9) xδ = (A∗A+ δI)−1A∗y =
∑
n

λn
λ2
n + δ

〈y, un〉vn.

Notice the e�ect of Tikhonov regularization on the frequency 〈y, un〉 of
y in comparison with direct inversion A−1y: the frequency is multiplied by
a factor 1

λn
in the latter, which tends to in�nity as n → ∞, whereas in

Tikhonov regularization, the frequency is multiplied by λn/(λ
2
n + δ), which

tends to 0 as n → ∞, because δ > 0. Also, notice that if λn � δ, which is
possible for small values of n, then

λn
λ2
n + δ

=
1

λn

(
1

1 + δ
λn

)
≈ 1

λn
.
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4.4 A Generalization of Tikhonov Regularization

Hence Tikhonov regularization can be seen as a kind of smoothed spectral
truncation: it is almost like the TSVD for the low frequencies, and then it
uses less and less of the higher frequencies of y for estimating x, where the
TSVD just doesn't use the high frequencies from one point on.

The essential question in Tikhonov regularization is about the choice of
the regularization parameter δ > 0. As with the choice of the smoothing
parameter in Section 3.2, a cross-validation method can be used for choosing
δ. However, if the exact noise level in the data is known, one method of
choosing δ it is given by the Morozov discrepancy principle, which is similar
to the discrepancy principle for the TSVD.

Let xδ be de�ned by (4.9), and de�ne the discrepancy function f : R+ →
R+ by

(4.10) f(δ) = ‖Axδ − y‖.

The Morozov discrepancy principle states that δ should be chosen such that

(4.11) f(δ) = ε,

where ε is the noise level. In other words, it states that we shouldn't attempt
to be more precise than the noise level. The following Theorem tells us when
this principle can be applied.

Theorem 4.3.3. The discrepancy function (4.10) is continuous, strictly in-
creasing and

‖Py‖ ≤ f(δ) ≤ ‖y‖, δ ≥ 0,

where P is the orthogonal projection H2 → Im(A)⊥. Hence the equation
(4.11) is satis�ed if, and only if we have ‖Py‖ ≤ ε ≤ ‖y‖.

Remark 4.3.4. The �rst inequality ‖Py‖ ≤ ε should be naturally satis�ed,
for the component Py orthogonal to Im(A) should be due to noise. The
second inequality ‖y‖ ≤ ε means that the signal level is greater than the
noise. Indeed, we would expect this, because otherwise, if ‖y‖ < ε, we can
take x = 0 in view of our discrepancy principle. l

4.4 A Generalization of Tikhonov Regularization

Up to now, we have considered the operator A : H1 → H2 to be linear.
Tikhonov regularization is also applicable when this is not the case. We
need to introduce a weaker condition on A, which is Fréchet di�erentiability.
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4 NOTIONS FROM INVERSE PROBLEMS

De�nition 4.4.1. An operator A : H1 → H2 is Fréchet di�erentiable at
x0 ∈ H1 if it allows an expansion

A(x0 + z) = A(x0) +Rx0z +Wx0(z),

where Rx0 : H1 → H2 is a continuous linear operator and

‖Wx0(z)‖ ≤ ‖z‖εx0(z),

where the functional z 7→ εx0(z) ∈ H2 tends to zero as z → 0 ∈ H1. ¸

Think of Fréchet di�erentiability as an order 1 Taylor expansion. As
with Taylor expansions, we are going to use Rx0 to linearize A around x0,
and thus we have the following approximation to our functional Fδ de�ned
in de�nition 4.3.1.

Fδ(x) ≈ F̌δ(x;x0) = ‖Rx0x− g(y, x0)‖2 + δ‖x‖2,

where

g(y, x0) = y − A(x0) +Rx0x0.

We have seen in the previous section that the minimizer of F̌δ(x;x0) is

(4.12) x = (R∗x0
Rx0 + δI)−1R∗x0

g(y, x0).

This is the basis to an iterative method for minimizing Fδ(x). However, it
appears that it is better to take x0 + s(x − x0) as our new x0, with some
step-size s, instead of just taking x for our next iteration. The complete
iterative method is

1. Pick an initial x0 and set k = 0,

2. Calculate Rxk ,

3. Compute x from (4.12) with xk instead of x0, and de�ne ∆x = x− xk.

4. Find s > 0 minimizing the function

f(s) = ‖A(xk + s∆x)− y‖2 + ‖xk + s∆x‖2,

5. Set xk+1 = xk + s∆x and increase k ← k + 1,

6. Repeat steps 2.-5 until the method converges.
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4.4 A Generalization of Tikhonov Regularization

Conclusions

We have seen in this section some examples of inverse problems. In partic-
ular, we observed that the estimation of high frequencies is ill-posed. More
generally, we have seen the easiest canonical form of inverse problems: Fred-
holm equations of the �rst kind. Then we presented two methods to solve
them: Spectral truncation � based on the SVD decomposition of compact
operators � and Tikhonov regularization � which is essentially an in�nite
dimensional Ridge regression. We have seen that an essential part in these
regularization methods was the choice of the parameter k, and that they were
some techniques for choosing it: the discrepancy principles, if we assumed the
observation noise to be of deterministic norm, or the cross-validation tech-
niques if it was considered random. Eventually, we saw a generalization of
Tikhonov regularization to non-linear equations, which essentially boils down
to considering local linear approximations of the equation and proceeding by
iterations.
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5
Testing for Functional Data

Now that we have some knowledge of Hilbert spaces, probability in abstract
spaces, functional data analysis, and that we have seen some basic techniques
for dealing with inverse problems, we can turn our attention to statistical
inference for functional data.

We will �rst start by giving a review of Mas (2007). The article presents
a test statistic for the mean of sample curves. We will see that an inverse
problem occurs when we try to �free� the centered sample mean X−m0 from
dependencies on the unknown distribution of the data, and that Tikhonov
regularization is necessary. Then, we will present a paper of Cardot et al.
(2003), which gives a test for the functional linear model with scalar re-
sponses. Again, an inverse problem will naturally arise, and Spectral trun-
cation will be used.

5.1 Testing for the Mean of Random Curves

Let us review the article of Mas (2007), which proposes an asymptotic test
for the mean of random curves. An interesting feature of this article is that
it considers X1, . . . , Xn being an i.i.d. sample of L2 ([0, 1])-valued random
variable X, without the assumption that X is Gaussian. It also supposes
a mild condition on the rate of decrease of the eigenvalues of the operator.
Letting m be the mean of the random variable X, the paper gives a test for{

H0 : m = m0, against

Ha : m 6= m0,

where m0 is a given curve in L2 ([0, 1]). Let us denote by 〈f, g〉 (‖f‖) the
scalar product (respectively the norm) in L2 ([0, 1]). The �rst assumption
about X is

A1: E‖X‖4 <∞.



5 TESTING FOR FUNCTIONAL DATA

This allows us to de�ne the covariance operator Γ : L2 ([0, 1])→ L2 ([0, 1]) of
X under H0:

Γf(t) = E [〈X −m0, f〉(X −m0)(t)] =

∫ 1

0

r(t, s)f(s)ds,(5.1)

where r(t, s) = E [(X(t)−m0(t))(X(s)−m0(s))] and the second equality
comes from Fubini's Theorem. Let us also de�ne the empirical covariance
operator under H0:

Γnf(t) =
1

n

n∑
k=1

[〈Xk −m0, f〉(Xk −m0)(t)](5.2)

=

∫ 1

0

[
1

n

n∑
k=1

(Xk −m0)(t)(Xk −m0)(s)

]
f(s)ds.(5.3)

The assumption A1 implies that the operator Γ is nuclear (see Proposi-
tion 2.5.9), and self-adjoint. Let λ1 ≥ λ2 ≥ · · · ≥ 0 denote its eigenvalues
associated with the eigenelements e1, e2, . . . ∈ L2 ([0, 1]). The spectral Theo-
rem for compact self-adjoint operators (Theorem 1.6.19) tells us that Γ can
be written as

(5.4) Γf =
∞∑
k=1

λk〈ek, f〉ek.

For u, v ∈ L2 ([0, 1]), let u ⊗ v denote the operator on L2 ([0, 1]) de�ned by
u⊗ v(f) = 〈u, f〉v. Then Γ can be rewritten

(5.5) Γf = E [(X −m)⊗ (X −m)] =
∞∑
k=1

λk(ek ⊗ ek).

The Hilbert-Schmidt operator Γ1/2, the square root of Γ, will play a key role
in this section, and is de�ned by

(5.6) Γ1/2 =
∞∑
k=1

√
λk(ek ⊗ ek).

The second assumption about X is:

A2: The covariance operator Γ of X is injective, that is, λk > 0 for all
k ≥ 1.

When A2 holds, the inverse Γ−1/2 of Γ1/2 is an unbounded operator, de�ned
on the dense subspace of L2 ([0, 1]):

D =

{
∞∑
k=1

αkek ∈ L2 ([0, 1]) :
∞∑
k=1

α2
k

λk
<∞

}
.
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5.1 Testing for the Mean of Random Curves

The Finite Dimensional Setting

In order to understand who to construct such a test for the mean of random
curves, let us �rst consider the �nite dimensional setting, in which X1, . . . ,Xn

be an i.i.d. sample of vectors of Rp with mean m ∈ Rp. In order to test for{
H0 : m = m0, against

Ha : m 6= m0,

we de�ne the empirical covariance matrix Mn(p) of our sample by

(5.7) Mn(p) =
1

n

n∑
k=1

(Xk −m0)(Xk −m0)T,

under the assumption H0. This matrix is often supposed invertible for n
large enough, and then the test statistic is derived from

(5.8) Mn(p)−1/2

(
1√
n

n∑
k=1

(Xk −m0)

)
,

which converges under H0, as n → ∞, to a Gaussian random vector with
covariance matrix I, the identity matrix.

The In�nite Dimensional Setting

In the in�nite dimensional setting, we still have that

Sn = n−1/2

n∑
k=1

(Xk −m0)

converges in distribution to a L2 ([0, 1])-valued Gaussian random variable G
by a version of the Central Limit Theorem (see Theorem 2.6.7). However, the
distribution of the random variable G depends on the covariance struture Γ of
X, and hence on the unknown λj's. In order to free Sn from the dependence

on these unknown eigenvalues, one might be tempted to compute �Γ
−1/2
n Sn�,

where Γn is the empirical covariance operator is de�ned by

(5.9) Γn =
1

n

n∑
i=1

(Xi −m0)⊗ (Xi −m0),

under the null hypothesis EXi = m0.
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5 TESTING FOR FUNCTIONAL DATA

However, Γ
1/2
n is a �nite rank operator, and is therefore not invertible.

Even if we knew the true covariance operator Γ, we couldn't use �Γ−1/2G� as
a test statistic, for Γ−1/2 is an unbounded operator.

Indeed, the problem we are looking at is the following: if Y is a L2 ([0, 1])-
valued random variable with the identity as covariance operator, then

G ∼ Γ1/2Y,

where X ∼ Z means that the random variables X and Z have the same
distribution. Ideally, we would take Γ−1/2G as a test statistic. But notice
that even if G = Γ1/2Y , the problem of recovering Y from the knowledge of
G would be ill-posed, and some regularization would be needed.

Our situation is a bit more complicated here: we know that Sn converges
in distribution toG, some Gaussian random variable with covariance operator
Γ, of which we only have an estimate Γn. Thus for a large n, we would assume
that

Sn
·∼ Γ1/2

n Y,

where
·∼ means �approximatively equal in distribution�. Then again, even if

Γ
1/2
n Y = Sn, recovering Y from the knowledge of Sn would be an ill-posed

problem, because Γn is of �nite rank.
Our goal is consequently double: we have to approximate Γ−1/2 by a

pseudo-inverse Ln, built from Γn, and then study the convergence of LnSn.
Before getting into more details, let us make some remarks:

1. The pseudo-inverse Ln is built from Γn, and is thus random,

2. At the limit n → ∞, we would like the operator norm ‖Ln‖ of Ln
to be a non-decreasing sequence tending to in�nity, to approximate
�perfectly� Γ−1/2 at the limit n→∞.

The Choice of Regularization Method

In order to regularize Γ−1/2, we can either use spectral truncation (section 4.2)
or Tikhonov regularization. With spectral truncation, we would use the
operator

Γ
−1/2
(p) =

p∑
k=1

λ
−1/2
k (ek ⊗ ek),

which is a bounded operator with norm λ
−1/2
p , instead of the operator Γ−1/2.

This method has the disadvantage that we need to estimate Γ
−1/2
(p) through

functional principal component analysis of Γn, where Γn is de�ned in (5.9).
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5.1 Testing for the Mean of Random Curves

However, this is a very unstable procedure. Denote by ekn the k
th eigenvector

of Γn such that ‖ekn‖ = 1, and de�ne e′kn = sgn(〈ekn, ek〉)ek, which is just
choosing between ±ek to get 〈ekn, e′kn〉 ≥ 0. Then if the subspace Vk = {v ∈
L2 ([0, 1]) : Γv = λkv} has dimension 1, Lemma 4.3 of Bosq (2000) gives us
the bound

(5.10) ‖ekn − e′kn‖ ≤ ak‖Γn − Γ‖op,

where a1 = 2
√

2(λ1 − λ2)−1,

ak = 2
√

2 max[(λk−1 − λk)−1, (λk − λk+1)−1], k ≥ 2,

and ‖Γ‖op is the operator norm of Γ (see Proposition 1.3.5). Notice that
(5.10) is an inequality between random elements (ekn and Γn are random),
and

1. The term ak grows to in�nity as k →∞, because the sequence (λk) is
a Cauchy sequence tending to 0,

2. We have the following asymptotic bound on ‖Γn−Γ‖ from Bosq (2000,
Corollary 4.1):

(5.11) ‖Γn − Γ‖ = O

((
log n

n

)1/2
)

a.s.,

where Xn = O (g(n)) a.s. if ∃C > 0 such that

P
[

lim
n→∞

Xn

g(n)
≤ C

]
= 1.

3. Furthermore, if we consider the L2(P)-norm of (5.10), then√
‖ekn − e′kn‖ ≤ ak

1√
n

√
E‖X‖4,

by Example 2.6.8.

Thus we have no guarantee that ‖ekn − e′kn‖ converges fast to 0.

All these reasons motivate Mas (2007) to use a variant of Tikhonov reg-
ularization. Instead of using the �classical� Tikhonov regularization (Γ +
kI)−1Γ1/2 to approximate Γ−1/2, the operator (Γ + αnI)−1/2 is chosen, with
operator norm 1/

√
αn, where (αn) a decreasing sequence of positive real num-

bers tending to 0. It is important to note that, conversely to Γ
−1/2
(p) , the norm
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of (Γ + αnI)−1/2 and (Γ + αnI)−1/2 are non-random and do not depend on
the rate of decay of the eigenvalues of Γ. Indeed, notice that

(Γ + αnI)−1/2 =
∞∑
i=1

(λi + αn)−1/2ei ⊗ ei,

where λi's are allowed to be equal to zero. Thus

‖(Γ + αnI)−1/2‖ = sup
i=1,2,...

1√
λi + αn

=
1
√
αn
,

and the same result holds for the empirical counterpart because it has �-
nite rank. Thus, the empirical version (Γn + αnI)−1/2 is chosen for the test
statistic.

Main results

Before we state the main result of Mas (2007), let us recall the assumptions
for completeness purposes:

A1: E‖X‖4 <∞,

A2: The operator Γ is injective,

The hypotheses we wish to test for are{
H0 : m = m0, against

Ha : m 6= m0.

Letting

Sn =
1√
n

n∑
k=1

(Xk −m0),

and

Γn =
1

n

n∑
i=1

(Xi −m0)⊗ (Xi −m0),

we know by the central limit Theorem that Sn converges weakly to a Gaussian
random variable G with mean zero and covariance operator Γ. Under the
further assumption

A3: The random process X is continuous in the mean (see De�nition 2.7.3),
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5.1 Testing for the Mean of Random Curves

the Karhunen-Loève expansion (Theorem 2.4.10) tells us that G admits the
representation

G =
∞∑
k=1

√
λkηkek,

where the ηk's are independent Gaussian random variables with unit variance,
and the convergence is uniform in L2(Ω,O,P).

Let (kn) ⊂ N be a sequence increasing to in�nity, and (αn) ⊂ R+ be a
sequence decreasing to zero, and de�ne

(5.12) ĉn =
kn∑
p=1

λ̂p

λ̂p + αn
and d̂n =

√√√√ kn∑
p=1

(
λ̂p

λ̂p + αn

)2

,

where λ̂p is the empirical pth eigenvalue of the empirical covariance operator
Γn (in fact they actually depend on n).

The following Theorem gives the test statistic:

Theorem 5.1.1 (Mas (2007)). Under assumptions A1, A2 and A3, there
exists two conjugated sequences (kn) and (αn) such that, under H0,

T̂n
w→ N(0, 3),

where T̂n is the statistic

(5.13) T̂n =
1

d̂n

(
‖(Γn + αnI)−1/2Sn‖2 − ĉn

)
,

and ĉn, d̂n are de�ned in (5.12).

Notice that this Theorem doesn't suppose any particular distribution of
the data, except that the sample is iid and assumptions A1, A2, and A3

hold. However, it does not tell us how to choose kn and αn. Under a further
assumption, the next Theorem answers this question:

Theorem 5.1.2. Let 0 < ν < 1/2, and assume A1, A2, A3 and

A4: for some M > 0 and ε > 0, we have λp ≤ M
p(log p)1+ε

, ∀p > 1.

Then with kn = n1/2−ν , and αn = (log n)−ε/(1+νε), if H0 holds, we have

T̂n
w→ N(0, 3).
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5.2 Testing in the Functional Linear Model with Scalar

Responses

In the previous section, we have seen a test for the mean of functional data.
It used the so-called Tikhonov regularization to build a pseudo-inverse of the
empirical covariance matrix, which was then used in the test statistic.

In this section, we are going to present a test for the Functional Linear
Model with Scalar Responses (FLMSR), based on Cardot et al. (2003). First,

let us introduce some notation: we shall denote by 〈f, g〉 =
∫ 1

0
f(t)g(t)dt the

scalar product on the Hilbert space L2 ([0, 1]) of real -valued square-integrable
function on [0, 1], and by ‖f‖2 the norm it de�nes.

The FLMSR is de�ned by

(5.14) Y = Ψ(X) + ε,

where the assumptions are

A1: X is a centered random variable with values in L2 ([0, 1]), and E‖X‖4 <
∞,

A2: Ψ : L2 ([0, 1])→ R is a continuous linear operator,

A3: Y is a real-valued random variable,

A4: ε, which represents the noise, is a real-valued random variable with
mean zero and variance σ2, and is independent from X.

By the Riesz-Fréchet representation Theorem, we know that there exists a
ψ ∈ L2 ([0, 1]) such that

Ψ(f) = 〈ψ, f〉, ∀f ∈ L2 ([0, 1]) ,

and hence we can rewrite our model as

(5.15) Y =

∫ 1

0

ψ(t)X(t)dt+ ε = 〈ψ,X〉+ ε,

with ψ ∈ L2 ([0, 1]). The problem we are going to consider is that of giving a
con�dence set for the function ψ, which is the in�nite dimensional equivalent
of the parameter β in a regression model

(5.16) y = Xβ + ε,

where y ∈ Rp,β ∈ Rn, and X is a p× n matrix.

102/123



5.2 Testing in the Functional Linear Model with Scalar Responses

Because the notion of con�dence set is dual to that of testing, our problem
is actually of �nding a test for the hypothesis:{

H0 : ψ = ψ0, against

Ha : ψ 6= ψ0,

where ψ0 ∈ L2 ([0, 1]) . Notice that assumption 1 tell us that the covariance
operator Γ = E [X ⊗X] : L2 ([0, 1])→ L2 ([0, 1]) of X, de�ned explicitly by

Γf = E [〈X, f〉X] =

∫ 1

0

E [X(·)X(s)] f(s)ds, f ∈ L2 ([0, 1]) ,

is nuclear, self-adjoint and non-negative. Let us also de�ne the cross-covariance
operator ∆ = E [X ⊗ Y ] : L2 ([0, 1])→ R, which is explicitly de�ned by

∆f =

∫ 1

0

E [X(t)Y ] f(t)dt, f ∈ L2 ([0, 1]) .

Notice that the three operators Ψ,Γ, and ∆ are linked by the relation

∆ = ΨΓ

because

ΨΓ = 〈ψ,E [X ⊗X]〉
= E [〈ψ,X ⊗X〉]
= E [X ⊗ 〈ψ,X〉]
= E [X ⊗ Y ] = ∆.

Before describing the test procedure, notice that Proposition 4.2.1 gives
us the orthogonal decomposition

L2 ([0, 1]) = ker(Γ)⊕ Im(Γ∗) = ker(Γ)⊕ Im(Γ),

where the second equality holds because Γ is self-adjoint. Using this decom-
position to get ψ = ψ1 + ψ2, we notice that

EY 2 = E
[
(〈X,ψ1〉+ 〈X,ψ2〉)2]

= E
[
〈X,ψ1〉2

]
+ 2E [〈X,ψ1〉〈X,ψ2〉] + E

[
〈X,ψ2〉2

]
= E

[
〈X,ψ1〉2

]
+ E

[
〈X,ψ2〉2

]
,

where the second equality holds because

E [〈X,ψ1〉〈X,ψ2〉] = E
[∫

Xsψ1(s)ds

∫
Xtψ2(t)dt

]
=

∫
(Γψ1)(t)ψ2(t)dt = 0.
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But the random variable 〈X,ψ1〉 is equal to zero with probability 1 because

E
[
〈X,ψ1〉2

]
= 〈Γψ1, ψ1〉 = 0.

Therefore, if we do not assume that ψ1 = 0, which is equivalent to assuming
ψ ∈ Im(Γ), the parameter ψ would be unidenti�able in our model. Observe
that in the �nite dimensional setting (5.16), this would happen if, and only
if, the columns of the design matrix X are not linearly independent.

So from now on, we will assume that ψ ∈ Im(Γ), and for simplicity, we
shall denote H = Im(Γ), which is a separable Hilbert space. If H is a �nite
dimensional, then our problem simpli�es to �tting a regression model, which
have been extensively studied (e.g. Seber (1977)). We are thus going to
consider that H is in�nite dimensional.

If we restrict the operators Γ,∆ to H, then we still have ∆ = ΨΓ, and
the operator Γ admits the decomposition

Γ =
∞∑
i=1

λiei ⊗ ei,

where (λi, ei) are the pairs of eigenvalue/eigenvectors of Γ, (ei) is a complete
orthonormal sequence in H and (λi) ⊂ R+ is a decreasing sequence tending
to zero, λi > 0 for all i ∈ N.

Our testing problem further simpli�es to{
H0 : ψ = 0, against

Ha : ψ 6= 0,

because we can replace Y by Y − 〈ψ0, X〉 = 〈0, X〉+ ε = ε.
The next proposition gives the idea of our test. Recall that Γ : H → H

and ∆ : H → H.

Proposition 5.2.1. Let ψ ∈ H = span(ei). Then ψ = 0 if, and only if
∆ = 0.

Proof. First let ψ = 0. Then Ψ = 0 and ∆ = ΨΓ = 0. Conversely, if ∆ = 0,
then taking the adjoints yields ΓΨ∗ = 0, because Γ is self-adjoint. But Γ is
injective, thus Ψ∗ = 0 and Ψ = 0. This latter is equivalent to ψ = 0, and the
proof is complete.

This proposition tells us that testing for ψ = 0 is the same as testing for
∆ = 0. If we have an i.i.d sample (Xi, Yi), i = 1, . . . , n, then by the strong
law of large numbers for Hilbert spaces, we know that

∆n =
1

n

n∑
i=1

Xi ⊗ Yi
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converges almost surely to ∆. Thus from the continuous mapping Theorem,
the operator norm ‖∆n‖ converges almost surely to ‖∆‖ = 0. So we are
going to construct a test procedure based on the norm of the empirical cross-
covariance operator ∆n.

We are going to use the central limit Theorem for Hilbert spaces to have
an asymptotic distribution for ∆n. But �rst, let us notice that for any T ∈
H∗ = L(H,R), the Riesz-Fréchet Theorem tells us that T = 〈f, ·〉 for a unique
f ∈ H, and ‖T‖ = ‖f‖. Thus T = v⊗ 1 in our tensor product notation, and
this gives us a simple way of identifying a functional on H with an element
of H, and vice-versa, via

H∗ ←→ H
f ⊗ t ←→ t · f, f ∈ H, t ∈ R.

Notice that this identi�cation is norm-preserving, in the sense that

‖f ⊗ t‖ = ‖t · f‖,

where the ‖ · ‖ denotes the operator norm in H∗ on the left-hand side, and
the norm in H on the right-hand side. In the latter, we are going to use this
identi�cation extensively and abuse notation by writing f ⊗ t = t · f .

Notice that we can rewrite the empirical cross-covariance operator as
∆n = 1

n

∑n
i=1 Yi · Xi ∈ H, where each Yi · Xi are i.i.d. with mean ∆ = 0.

Thus the Central Limit Theorem for Hilbert spaces yields

Theorem 5.2.2. Under the null hypothesis ψ = 0, the random variable√
n∆n converges in distribution to a Gaussian random variable G∆ with mean

zero and covariance operator C = σ2Γ.

Proof. We only need to show that C = σ2Γ. The Central Limit Theorem tells
us that C is the covariance operator of the random variable X ⊗ Y = Y ·X.
Direct computation yields

C = E [(Y ·X)⊗ (Y ·X)]

= E
[
Y 2 · (X ⊗X)

]
= E

[
Y 2
]
E [X ⊗X]

= σ2Γ,

where the third equality is justi�ed because Y = 〈0, X〉+ε = ε is independent
from X.

In order to understand the distribution of
√
n∆n for a large n, we need a

Karhunen-Loève expansion of the random variable G∆. We therefore make
another assumption that allows us to use it:
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A5: The random process X is continuous in the mean (see De�nition 2.7.3),

We have the following decomposition from the Karhunen-Loève expansion.

Theorem 5.2.3. If A5 holds, then the random variable G∆ admits the de-
composition

(5.17) G∆ = σ

∞∑
j=1

√
λjηjej,

the convergence is uniform in L2(Ω,O,P), and (ηj) are independent Gaussian
random variables with mean zero and variance 1.

We can thus aproximate the distribution ‖
√
n∆n‖2 by that of ‖G∆‖2, for

which we have the explicit formula

(5.18) ‖G∆‖2 =
∑
j

σ2λjη
2
j ,

in view of Theorems 5.2.2 and 5.2.3. However, the distribution of (5.18)
depends on the unknowns σ and (λj). To �free� our random variable of these
dependences, let us �rst write

G∆ = σΓ1/2Z = σΓ1/2Z = σZΓ1/2,

where Z =
∑

j ηjej, has a known distribution, and the last equality makes
sense with our identi�cation of H∗ and H. Indeed,

ZΓ1/2 =

(∑
j

ηjej ⊗ 1

)(∑
i

√
λi(ei ⊗ ei)

)
=
∑
j

√
λjηj ⊗ 1,

which in turn equals to Γ1/2Z after the identi�cation ηj ⊗ 1 ≡ ηj.
Because neither G∆, σ nor Γ are known, we approximate G∆ by

√
n∆n, σ

by some estimator σ̂ and the covariance operator by its empirical counterpart

(5.19) Γn =
1

n

n∑
i=1

Xi ⊗Xi =
n∑
i=1

λ̂iêi ⊗ êi,

where the λ̂i, êi are the eigenvalues and eigenfunctions of Γn, respectively.
We now have to �nd Z that solves

σ̂ZΓ1/2
n =

√
n∆n.

106/123



5.2 Testing in the Functional Linear Model with Scalar Responses

But as seen in Section 5.1, this leads to an inverse problem. One way of by-
passing this problem is through spectral truncation. Let us de�ne a truncated
version of Γ−1/2,

An =

pn∑
j=1

= λ
−1/2
j ej ⊗ ej,

where (pn) is an increasing sequence satisfying pn < n. The empirical coun-
terpart of An is naturally de�ned by

(5.20) Ân =

pn∑
j=1

= λ̂
−1/2
j êj ⊗ êj,

with λ̂j and êj de�ned in (5.19). Our test statistic will be based on

(5.21) Dn =
n

σ̂2
‖∆nÂn‖2.

We would assume that Dn follows approximatively a χ2 distribution with pn
degrees of freedom if n is large. Furthermore, if we consider the test statistic

(5.22) Tn =
1
√
pn

( n
σ̂2
‖∆nÂn‖2 − pn

)
=

1
√
pn

(Dn − pn),

then we have the following convergence Theorem:

Theorem 5.2.4 (Cardot et al. (2003)). Let ∆n, Ân be de�ned as in (5.21)
and (5.20), and let

Tn =
1
√
pn

(Dn − pn).

Then under the null hypothesis ψ = 0, if the following assumptions hold:

1. λ̂1 > λ̂2 > · · · > λ̂pn > 0, a.s, (see (5.19))

2.
√
n(σ̂2 − σ2) is bounded in probability,

3. E‖X‖4 <∞,

4. The random process X is continuous in the mean,

there exists a sequence (pn) satisfying

nλ2
pn(∑pn

j=1 aj

)2 →∞ as n→∞,

where a1 = 2
√

2(λ1 − λ2)−1 and

ak = 2
√

2 max
[
(λk−1 − λk)−1, (λk − λk+1)−1

]
, k ≥ 2,

such that Tn
d→ N (0, 2), with Tn de�ned in (5.22).
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Conclusions

In this section, we have presented two tests for functional data. First, we
have given an asymptotic test for the mean of random curves, under the as-
sumption of �nite fourth moment, continuity in the mean, and injectivity of
the covariance operator. We saw that the in�nite dimensional character of
the curves leads to an inverse problem when we try to make the test indepen-
dent of the particular distribution of the data. Tikhonov regularization was
therefore used as a solution to this. Then we presented an asympotitic test
for the functional linear model with scalar responses. We saw how the linear-
ity of the problem allowed us to simplify it to test whether or not the linear
operator was trivial. The test was based on the empirical cross-covariance
operator, and used Spectral truncation to deal with the inverse problem in-
volved. The assumptions involved where stronger than for the previous test,
in that the empirical eigenvalues need to be assumed almost surely di�erent.
Also, no technique for choosing the truncation level pn was presented in the
second paper.
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6
An Application to DNA Shape Analysis

Now that we have seen some tests for functional data, let us give an appli-
cation to testing for the mean of a set of DNA Minicircles. We would like to
test if the mean of the DNA minicircles is indeed a circle.

A DNA Minicircle is a short strand of DNA (with around 150 base pairs)
with its ends bound together to form a loop, by a reaction called cyclization.
The data set we are going to test is a set of 94 DNA minicircles of 158 base-
pair length. Among these, 63 curves are contain a so-called TATA sequence,
and the remaining 31 curves contain the so-called CAP sequence instead.
Our goal will be to test if the mean of TATA curves or CAP curves is circle.

These curves were reconstructed (Jacob et al. 2006) from electron micro-
graphs obtained by Jan Bednar at the Laboratory of Ultrastructural Analy-
sis of the University of Lausanne, Switzerland. They were then centered and
scaled, in order to have center of mass zero and unit length, before being
individually aligned using the coordinate system induced by their moments
of inertia tensor (see Panaretos et al. (to appear) for details).

The data we are going to consider are the orthogonal projections of these
curves onto the principal plane of their second and third principal axes of
inertia, which we will call PAI2, PAI3 (following the notation of Panaretos
et al. (to appear)), and are shown in Figures 6.1 and 6.2.

Each curve was described by 401 points, and were �tted using a Fourier
basis of length 151, with basis elements

1,
√

2 cos(2πt),
√

2 sin(2πt), . . . ,
√

2 cos(150πt),
√

2 sin(150πt), t ∈ [0, 1],

for each coordinate PAI2, PAI3.
Smoothing by penalization of the second derivative was considered a pri-

ori, but happened to be unnecessary. Indeed, an investigation of the Gener-
alized Cross-Validation (GCV) criterion (Ramsay & Silverman 2005, Section
5.4.3) for choosing the smoothing parameter λ suggested a value of about
λ = 10−5.4, corresponding to a value of 4.78 · 10−4 for the GCV criterion.
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Figure 6.1: The TATA curves projected on the principal plane (top), and the

coordinates on the PAI2 (middle) and PAI3 (bottom). The mean

curve is represented in white.
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Figure 6.2: The CAP curves projected on the principal plane (top), and the

coordinates on the PAI2 (middle) and PAI3 (bottom). The mean

curve is represented in white.
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Figure 6.3: The values of the Generalized Cross-Validation criterion for choosing

the smoothing parameter λ for �tting the DNA minicircle curves.

The λ's are in a logarithmic scale.

However, the value of the GCV criterion seemed to be around 9 · 10−4 for
λ → 0 (see Figure 6.3), which led to believe that smoothing was not neces-
sary. Notice that this is coherent with the fact that the data we used was
actually resampled from a B-spline representation of the DNA minicircles
(Jacob et al. 2006), which apparently smoothed the data.

In order to test whether or not the mean curve is a circle, we �rst compute
numerically the length of the sample mean curve, and choose the radius of
the circle to have the that length. Notice that even though each curve has
unit length, the length of the sample mean curve is less or equal to one.
Numerical integration yields an approximate length of 0.854 for the TATA
sample mean, and of 0.867 for the CAP sample mean. Figure 6.4 shows the
plot of the sample mean and the circle of same length for TATA and CAP
curves.

Let us summarize the test we will conduct. For each of the curve set
X1, . . . , Xn

iid∼ X, (TATA or CAP), we would like to test the hypothesis{
H0 : EX = m0, against

Ha : EX 6= m0,

where m0 is a circle of given length, centered at the origin. In order to use
the test statistic presented in Theorem 5.1.1, we need to make the following
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Figure 6.4: In black, the sample mean curves for TATA curves (left) and CAP

curves (right), and the circles of corresponding length in dashed.

assumptions:

A1: E‖X‖4 <∞,

A2: The covariance operator Γ of X is injective, that is, λk > 0 for all
k ≥ 1,

A3: The random process X is continuous in the mean (see De�nition 2.7.3).

We can then apply Theorem 5.1.1 that tells us that for a large n and some
αn, kn, the test statistic

T̂n =
1

d̂n

(
‖(Γn + αnI)−1/2Sn‖2 − ĉn

)
,

has approximatively a normal distribution with variance 3. The quantities
ĉn, d̂n are de�ned in (5.12), and depend on the eigenvalues of the empirical
covariance operator, but also on αn, kn. These can be obtained via Theo-
rem 5.1.2, which relies on some knowledge on the behaviour of the eigenvalues
of the true covariance operator.

Hence we need to perform an eigenanalysis of the empirical covariance
operator. For curves X1, . . . , Xn, the empirical covariance operator, under
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the null hypothesis EX = m0, is

Γn =
1

n

n∑
i=1

(Xi −m0)⊗ (Xi −m0).

Recall that we have sample curves Xi : [0, 1]→ R2, and that we have used a
Fourier basis for each of the PAI2 and PAI3 coordinates. Because PAI2 and
PAI3 de�ne orthogonal axes, and the Fourier basis is orthonormal, the joint
basis

(6.1) (ϕ1, 0) , (ϕ2, 0), . . . , (ϕ151, 0), (0, ϕ1), (0, ϕ2), . . . , (0, ϕ151)

is orthonormal in L2([0, 1],R2), where

ϕ1 = 1, ϕ2 =
√

2 cos(2πt), ϕ3 =
√

2 sin(2πt), . . . , ϕ151 =
√

2 sin(150πt).

Therefore, if we denote by ci,m0 ∈ R302 the coe�cient of the ith curve (re-
spectively the mean underH0) in the basis (6.1), the eigenvalues/eigenvectors
of the empirical covariance operator satisfy the following equation (see Ram-
say & Silverman (2005, p.163)):

(6.2)

(
1

n

n∑
i=1

(ci −m0)(ci −m0)T

)
v = ρv, v ∈ R302, ρ ≥ 0.

We know that this equation will yield at most n linearly independent eigen-
vectors with eigenvalue di�erent from zero. This is veri�ed if we look at a
plot of the logarithm of the numerical eigenvalues of the empirical covariance
operator for our two curve sets. The computations where carried out with
R, and are shown in Figures 6.5 and 6.6. We thus retain only the 63 largest
eigenvalues for TATA curves, and the 31 largest for CAP curves.

Now that we have the eigenvalues of the covariance operator, let us use
Theorem 5.1.2 to choose the parameters αn, kn. Recall that the assumption
of this Theorem was the bound

∃M > 0, ε > 0 such that λp ≤
M

p(log p)1+ε
for all p > 1

on the true eigenvalues (λp) of the covariance operator. Notice that this
expression is equivalent to

∃M > 0, ε > 0: log λp + log p+ (1 + ε) log(log p) ≤ log(M) for all p > 1.

A way of verifying if this bound holds for our data is thus to plot the function

(6.3) Ξ(p) = log λ̂p + log p+ (1 + ε) log(log p), p > 1
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TATA CAP

αn 8.19 · 10−4 2.09 · 10−3

kn 5 4
tobs 38.62 23.65
p-value 3.78 · 10−110 1.93 · 10−42

Table 6.1: The values of αn, kn for the TATA and CAP curves, and the p-value

of the testing if the mean curves are circles.

for di�erent values of ε, and try to �nd an ε for which Ξ(p) looks bounded.
Trials with di�erent values of ε yields the value ε = 10 for both TATA and
CAP curves, as can be seen in Figure 6.7.

We can plug in the value of ε = 10 in Theorem 5.1.2, with the (arbitrary)
choice of ν = 0.1 to get the values of αn, kn. These values are shown in
Table 6.1, together with the value of the test statistic, and their corresponding
p-value:

p-value(tobs) = P (|Z| ≥ tobs) , Z ∼ N (0, 3).

We see that the p-values obtained are numerically zero, thus for both TATA
and CAP curves, we reject the hypothesis that the mean curve is a circle.

Conclusions

In this last section, we gave an application of Section 5 to DNA shape anal-
ysis, to test if the mean shape of a DNA minicircle is a circle. We �tted
the two samples of DNA minicircles to a Fourier basis of length 151, and it
turned out that roughness penalization was not necessary, because the data
was smooth enough already. Then we computed the length of the sample
means numerically, and used it to �nd the radii of the corresponding circles.
At this point, we had to perform an eigenanalysis of the empirical covariance
operator, and use Theorem 5.1.2 to �nd the regularization parameters. In
the end, the p-values of the test statistic (under the hypothesis that the mean
DNA curve is a circle) where numerically zero for both DNA minicircle sets,
and thus we rejected the hypothesis that the DNA minicircles are circles.
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Figure 6.5: The logarithm of the eigenvalues of the empirical covariance operator

for TATA curves. We see that starting from the 64th value, the

eigenvalues are numerically zero.
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Conclusion

I found the realization of this Master Project very interesting. I learned
a lot about Hilbert spaces, the di�erent types of operators, and the use of
the tensor product. Then with probability in abstract spaces, I learned how
to de�ne formally random processes, and got some intuition about random
variables in abstract spaces. The functional data analysis part was perhaps
one of the most challenging for me, because I had to run through the subject
quite quickly, and my main reference (Ramsay & Silverman 2005) lacked
sometimes of details, in my view. It was also my �rst encounter with some
basic notions such as PCA, and I am satis�ed now that I understand them.
I was also amazed how inverse problems occur often in various �elds (I found
out about this when talking with friends in engineering), and I'm glad that
I've learned some basics about them.

I found the review of Mas (2007), Cardot et al. (2003) interesting, but I
had the impression that some details where hidden and not properly dealt
with, especially with the use of Karhunen-Loève expansion. Indeed, I had
the impression that the necessary hypotheses (based on Grenander (1981))
where not clearly speci�ed for its use. Eventually, the DNA shape analysis
was a good exercise, because it obliged me to understand how to put into
application some of the concepts I had theoretically exposed in the previous
sections.

Now that I am at the end of this project, I have the funny impression
that all the things I've learned were not so complicated, in contrast with the
�rst impression I had. I guess this is how the learning process works!

Acknowledgements

I would like to thank Professor Victor M. Panaretos for all the time he took
for transmitting his intuition of the subject, and his patience with reading my
intermediary work. I would also like to thank my o�ce collegue David Kraus,
who helped me with all the day-to-day questions that I had. Eventually,
many thanks to Anne-Fanny, who reminded me at the last minute (at the
lake, the evening before the handout) to put mention �Mathematics� on the
cover page!





References

Axler, S. (1997), Linear Algebra Done Right, 2 edn.

Bosq, D. (2000), Linear Processes in Function Spaces, Springer.

Cardot, H., Ferraty, F., Mas, A. & Sarda, P. (2003), `Testing hypotheses in
the functional linear model', Scandinavian Journal of Statistics 30(1), 241�
255.

De Boor, C. (2001), A practical guide to splines. Rev. ed., Springer.

Debnath, L. & Mikusi«ski, P. (2005), Introduction to Hilbert Spaces, Elsevier
Academic Press.

Dunford, N. & Schwartz, J. T. (1988), Linear operators. Part I: General
theory. , John Wiley & Sons.

Gihman, I. & Skorohod, A. (1974), The theory of stochastic processes. I.
Translated from the Russian by S. Kotz., Springer-Verlag.

Grenander, U. (1981), Abstract Inference, John Wiley & Sons.

Hadamard, J. (1952), Lectures on Cauchy's problem in linear partial di�er-
ential equations., Dover Publications V.

Halmos, P. R. (1957), Introduction to Hilbert space and the theory of spectral
multiplicity. Reprint of the 2nd ed. 1957., AMS Chelsea Publishing.

Halmos, P. R. (1974a), Finite-dimensional vector spaces. Reprint of the 2nd
ed., Springer-Verlag.

Halmos, P. R. (1974b), Measure theory. 2nd printing., Springer-Verlag.

Hastie, T. & Tibshirani, R. (1990), Generalized additive models., Chapman
and Hall.

Ho�mann, K. (2000), `Stein estimation � a review', Statistical Papers
1(41), 127�158.

Jacob, M., Blu, T., Vaillant, C., Maddocks, J. H. & Unser, M. (2006), `3d
shape estimation of dna molecules from stereo cryo-electron micro-graphs
using a projection-steerable snake', IEEE Trans. Image Process 15, 214�
227.



REFERENCES

Kaipio, J. & Somersalo, E. (2005), Statistical and Computational Inverse
Problems, Springer.

Kallenberg, O. (1997), Foundations of modern probability., Springer.

Ledoux, M. & Talagrand, M. (1991), Probability in Banach spaces. Isoperime-
try and processes., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3.
Folge, 23. Berlin etc.: Springer-Verlag. xii, 480 p. .

Mas, A. (2007), `Testing for the mean of random curves: A penalization
approach', Statistical Inference for Stochastic Processes 10(2), 147�163.

Munkres, J. R. (2000), Topology. 2nd ed., Prentice Hall.

Panaretos, V. M., Kraus, D. & Maddocks, J. H. (to appear), `Second-order
comparison of gaussian random functions and the geometry of dna mini-
circles', JASA Theory & Methods .

Ramsay, J. & Silverman, B. (2005), Functional Data Analysis, 2 edn,
Springer.

Reed, M. & Simon, B. (1972), Methods of modern mathematical physics. I:
Functional analysis., Academic Press.

Roussas, G. G. (1997), A course in mathematical statistics. 2nd ed., Academic
Press.

Rudin, W. (1991), Functional Analysis, 2 edn, Mc Graw Hill.

Seber, G. (1977), Linear regression analysis., John Wiley & Sons.

Stein, C. (1956), `Inadmissibility the usual estimator for the mean of a multi-
variate normal distribution', Proceedings of the third Berkeley Symposium
on Mathematical Statistics and Probability 1, 197�206.

Tikhonov, A. N. & Arsenin, V. Y. (1977), Solutions of Ill-posed Problems,
V. H. Winston & Sons (Scripta Technica).

Weidmann, J. (1980), Linear operators in Hilbert spaces. Transl. by Joseph
Szücs., Graduate Texts in Mathematics, Springer-Verlag.

Yao, F., Müller, H.-G. & Wang, J.-L. (2005), `Functional data analysis for
sparse longitudinal data.', J. Am. Stat. Assoc. 100(470), 577�590.

Young, N. (1988), An Introduction to Hilbert Space, Cambridge University
Press.

122/123



REFERENCES

Zaanen, A. (1953), Linear analysis., North-Holland Publishing Company.

123/123


	Introduction
	List of Symbols
	A Review of Some Hilbert Space Theory
	Scalar Products, Norms and Infinite Dimensional Vector Spaces
	Orthogonality and Separability in Hilbert Spaces
	Bounded Linear Operators
	The Adjoint of an Operator
	Compact Operators
	The Spectral Theorem for Compact Self-Adjoint Operators
	The Singular Value Decomposition of Compact Operators

	Fundamentals of Probability in Abstract Spaces
	Some Necessary Measure Theory
	Existence of Processes
	Gaussian Random Vectors
	Gaussian Processes
	Basic Notions of Probabilities in Banach Spaces
	Some Stochastic Convergence Theorems in Banach Spaces
	Some Remarks on the Definitions of Gaussian Processes

	Basic Aspects of Functional Data Analysis
	Unpenalized Smoothing of Function Data
	Penalized Smoothing of Function Data
	Registration of functional data
	Principal Component Analysis
	Regularized Principal Component Analysis
	The Functional Linear Model

	Notions from Inverse Problems Pertinent to Functional Data
	Fredholm Equations of the First Kind
	Spectral Truncation
	Tikhonov Regularization
	A Generalization of Tikhonov Regularization

	Testing for Functional Data
	Testing for the Mean of Random Curves
	Testing in the Functional Linear Model with Scalar Responses

	An Application to DNA Shape Analysis
	Conclusions
	References

