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ABSTRACT
Motivated by the problem of inferring themolecular dynamics of DNA in solution, and linking themwith its
base-pair composition, we consider the problem of comparing the dynamics of functional time series (FTS),
and of localizing any inferred differences in frequency and along curvelength. The approach we take is one
of Fourier analysis, where the complete second-order structure of the FTS is encoded by its spectral density
operator, indexed by frequency and curvelength. The comparison is broken down to a hierarchy of stages:
at a global level, we compare the spectral density operators of the two FTS, across frequencies and curve-
length, based on a Hilbert–Schmidt criterion; then, we localize any differences to specific frequencies; and,
finally, we further localize any differences along the length of the random curves, that is, in physical space.
A hierarchical multiple testing approach guarantees control of the averaged false discovery rate over the
selected frequencies. In this sense, we are able to attribute any differences to distinct dynamic (frequency)
and spatial (curvelength) contributions. Our approach is presented and illustrated bymeans of a case study
in molecular biophysics: how can one use molecular dynamics simulations of short strands of DNA to infer
their temporal dynamics at the scaling limit, and probe whether these depend on the sequence encoded
in these strands? Supplementary materials for this article are available online.

1. Introduction

1.1. Functional Data Analysis

Functional data analysis (FDA; Ramsay and Silverman 2005;
Ferraty and Vieu 2006; Horváth and Kokoszka 2012; Wang,
Chiou, andMueller 2016) deals with inferential situations where
each data point that is best modeled as the realization of a
stochastic process, understood as a random function or a ran-
dom surface, such as weather data, neuroimages, electricity
consumption curves, or phonetics, to name a few (e.g., Ram-
say and Silverman 2002; Antoniadis, Paparoditis, and Sapatinas
2006; Aston and Kirch 2012a; Hadjipantelis et al. 2015). In a
typical setting, one is interested in drawing inferences on the
law of a random function X ∈ L2([0, 1],R) based on a sam-
ple X1, . . . ,XT

iid∼ X . The main characteristics of interest are the
mean function, and the covariance surface/operator. The mean
function describes the average shape of the random object of
interest, whereas the covariance operator encodes the second-
order fluctuations of the random function around its mean. The
covariance operator and its eigendecomposition are at the basis
of the Karhunen–Loève expansion (Grenander 1981), which
provides insight into the fluctuations of the random function X ,
and is the basis for optimal linear finite-dimensional approxima-
tions of X (through functional principal component analysis, or
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fPCA), thus providing themeans for applyingmultivariate tech-
niques to functional data (e.g., Ferraty 2011).

Though estimation of the mean function and covariance
operator in the iid setting of FDA is not substantially differ-
ent from its multivariate counterpart, with

√
T-consistent and

asymptotically Gaussian estimators (at least when assuming that
the data X1, . . . ,XT are readily available as curves, or densely
sampled, see, e.g., Dauxois, Pousse, and Romain 1982; Mas and
Menneteau 2003; Hall and Hosseini-Nasab 2006), statistical
inference in the context of FDA typically involves an inverse
problem, making it intrinsically harder from the multivariate
setting. This problem can nevertheless be tackled by appropriate
regularization—as exemplified by one-sample tests for themean
(Mas 2007), two-sample tests for the mean (Fan and Lin 1998;
Cuevas, Febrero, and Fraiman 2004), and two-sample tests for
covariance operators (Panaretos, Kraus, and Maddocks 2010;
Kraus and Panaretos 2012; Horváth, Kokoszka, and Reeder
2013)—or through resampling techniques (e.g., Benko, Härdle,
and Kneip 2009; Boente, Rodriguez, and Sued 2014; Paparoditis
and Sapatinas 2014).

1.2. Functional Time Series

Despite being relevant for a broad range of applications, the iid
setting of FDA is not appropriate in situations where there is a
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natural form of dependency in the data collection, such as when
data are collected sequentially in time. Examples of such data
include (but are not limited to) daily electricity consumption
curves (Antoniadis, Paparoditis, and Sapatinas 2006), functional
MRI data (Aston and Kirch 2012a), or molecular dynamics tra-
jectories of DNA minicircles (see Section 2). In such cases, the
data can be modeled as a stationary time series of functions, or
stationary functional time series.

Inference for functional time series is classically carried out
under functional autoregressive models, or more general lin-
ear models (see, e.g., Bosq 2000; Mas 2002; Ferraty and Romain
2011; Hörmann and Kidziński 2012; Aue et al. 2014; Aue, Nor-
inho, andHörmann 2015). Nevertheless, there is no a priori rea-
son to expect that the behavior of a functional time series should
be described by a linear process of any particular form or order:
potentially nonlinear and/or non-Gaussian situations must be
considered.

The problem of inference for functional time series beyond
linear assumptions has only recently started to be addressed
(Hörmann and Kokoszka 2010). Work has been done on assess-
ing whether a dataset is independent against an ergodic alterna-
tive (Horváth, Hušková, and Rice 2013), or whether two func-
tional time series are independent (Horváth and Rice 2015a).
Horváth, Kokoszka, and Rice (2014) developed test for the sta-
tionarity of functional time series, and Kokoszka and Young
(2016) considered tests for stationarity around a deterministic
trend. The problem of two-sample testing for equality of the
mean function of two functional time series, without resort-
ing to linearity assumptions, has been considered by Horváth,
Kokoszka, and Reeder (2013), Fremdt et al. (2014), andHorváth
and Rice (2015b). Zhang et al. (2011) and Aston and Kirch
(2012a,b) considered the change point detection of the mean
function. Concerning inference on the second-order structure,
Horváth, Kokoszka, and Reeder (2013) and Horváth, Rice, and
Whipple (2014) proposed a consistent estimator for the long-
run covariance operator, Kokoszka and Reimherr (2013) estab-
lished the asymptotic normality of the sample covariance oper-
ator and its eigenfunctions, while Zhang and Shao (2015) con-
sidered the comparison of the covariance operators of two func-
tional time series, a problem that has attracted considerable
attention in the case of two collections of iid functional data
(Panaretos, Kraus, andMaddocks 2010; Boente, Rodriguez, and
Sued 2011; Kraus and Panaretos 2012; Horváth and Kokoszka
2012; Fremdt et al. 2013; Paparoditis and Sapatinas 2014; Pigoli
et al. 2014; Boente, Rodriguez, and Sued 2014). The covariance
operator, however, fails to capture any of the dynamics of a func-
tional time series; and the long-run covariance operator cap-
tures only crude aspects of the time dynamics (being the sum
of the autocovariance operators over lags). To capture the com-
plete second-order dynamics of a functional series, Panaretos
and Tavakoli (2013a,b) introduced a frequency domain frame-
work (see alsoHörmann, Kidziński, andHallin 2015; Hörmann,
Kidziński, and Kokoszka 2015), by means of the spectral den-
sity operator, the Fourier transform of the complete collection
of auto-covariance operators; arguably, this would be the object
upon which inferences related to dynamics ought to be based.

The methodological contribution of our article is the devel-
opment of inferential tools for the comparison of the complete
second-order dynamics (encoded by all the lag-t autocovari-
ance operators) of two stationary functional time series, by

means of the frequency domain approach, as introduced in
Panaretos and Tavakoli (2013a,b). Though this is arguably a
core methodological problem in its own right, our study is
motivated by the applied challenge of inferring and comparing
the coarse-grained dynamics of DNA in solution, based on
molecular dynamics simulation. The details of this problem,
and its connection with functional time series are surveyed
in the next section. Our methodological contributions will
then be developed in parallel with a case study on inferring
base-pair-dependent dynamical properties of DNA.

1.3. Molecular Biophysics

Molecular biophysics investigates, models, and characterizes the
physical structures and dynamics that occur within a living
organism at the molecular level (Glaser 2012, chap. 1). This
study encompasses a bewildering variety of macromolecular
structures, processes, and their interactions, the most iconic of
which is arguably the biopolymer DNA. It is by now well under-
stood how the structure of DNA encodes the entirety of genetic
information of an organism in the sequence of its base-pairs, and
how its double helix geometrywith complementary steps built of
these bases allow it to be transcribed or passed on fromparent to
offspring. The structural composition and geometrical arrange-
ment is only part of the story, though: when fulfilling its biolog-
ical purpose, the DNA polymer undergoes important mechani-
cal maneuvres including twisting, bending, and looping (Garcia
et al. 2007; Prévost, Takahashi, and Lavery 2009). For this rea-
son, biophysicists are particularly interested in understanding
the mechanical properties and dynamics of DNA (Mastroianni
et al. 2009), and the relationship between the base-pair sequence
composition, and the mechanical properties and dynamics of
DNA (Peters andMaher 2010). Linking sequence to mechanical
properties and dynamics would not only shed light into funda-
mental biological processes (such as transcription, regulation,
and packing), but also holds promise in the use of DNA as a
material for nanoengineering (Seeman 2005; Rothemund 2006).

The mechanics of DNA can be studied in a wide range
of different scales, ranging from the fine-grained (atom-by-
atom, for instance) to the coarse-grained (at the order of per-
sistence length, i.e., about 160 base-pairs (Walter, Gonzalez,
and Maddocks 2010; Gonzalez, Petkevičiūtė, and Maddocks
2013); or even at the order of thousands of base-pairs (Sam-
briski, Schwartz, and De Pablo 2009). These mechanics are fun-
damentally stochastic: the intrinsic conformational characteris-
tics of the molecule are subjected to thermal fluctuations due to
their surrounding environment. And though elaborate stochas-
tic models exist that offer detailed descriptions of the atom-by-
atom (or atomic level ensemble-by-ensemble) behavior of the
molecule, the determination of their scaling limits at the more
coarse-grained level is typically mathematically intractable. In
this limit, one would consider the conformational mechanics
of an entire strand of DNA, seen as a curve or function, rather
than of its individual constituent atoms. It is therefore natural
to ask whether by observation of DNA strands, one could statis-
tically infer information on their coarse-grained limit, seen as
a random curve, and indeed link it to their base-pair sequence
composition. The natural setting for this would be the setting
of functional data analysis, where one is precisely interested in
probing the law of a random curve on the basis of several of its
realizations.
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To obtain sample DNA curves, one may perform cycliza-
tion experiments. Cyclization experiments involve short DNA
strands whose ends meet, resulting in a loop-like configura-
tion. The resulting closed curves are called DNA minicircles,
and are excellent specimens for the study of DNAmechanics, as
they yield a naturally stressed state in which intrinsic properties
are amplified relative to extrinsic thermal fluctuations (Shore,
Langowski, and Baldwin 1981; Shore and Baldwin 1983; Kahn
and Crothers 1992). To link conformational variability to base-
pair sequence, one may probe minicircles with slightly differing
base-pair sequences, for example, CAP minicircles and TATA
minicircles (Amzallag et al. 2006; see Section 2), whose base-pair
composition coincides in all but a few basis steps. For example,
based on three-dimensional reconstructions of a sample of CAP
& TATA minicircles, obtained by cryo-electron microscopy, it
appears that the differences between the two minicircles are not
in their mean conformation (Amzallag et al. 2006), but in the
way they vary around their mean conformation, as was estab-
lished by means of a functional data analysis of their covariance
structure (Panaretos, Kraus, and Maddocks 2010).

Microscopy-based studies, however, only allow static insight
into the mechanics of DNA minicircles, and do not yield infor-
mation on their dynamical properties, since they are based on
“still images” of the DNA minicircles embedded in vitrified ice.
The ideal kind of data needed for inferring the coarse-grained
dynamics of DNA, and their link to sequence, would be in the
form of a movie of DNA minicircles oscillating in solution.
Though empirical acquisition of such data is as of yet infeasi-
ble, in silico surrogates can be created via Molecular Dynam-
ics (MD) simulations (Leach 2001; Dryden et al. 2002; Lankas,
Lavery, and Maddocks 2006; Freddolino et al. 2006; Sanbon-
matsu and Tung 2007; Pérez, Luque, and Orozco 2011; Mitchell,
Laughton, and Harris 2011; Curuksu, Kannan, and Zacharias
2014; Pasi et al. 2014). MD simulations are used to obtain the
trajectory of a DNA minicircle moving in solution, and are
obtained by numerically solving fine-grained atomic level mod-
els on multi-body interactions between all the atoms of water
and DNA. These simulations are extraordinary in their com-
putational and mathematical complexity. However, as was men-
tioned earlier, it is not the trajectories of each individual DNA
atom that is of interest, but their joint behavior in the coarse
grained limit, which can be thought as a function.

The motivation for this article is that of inferring dynami-
cal properties of DNA through MD simulations in their scaling
limit, and to investigate their dependence onbase-pair sequence.
The data we will be working with are MD trajectories of CAP
& TATA minicircles oscillating in solution. We shall model
their scaling-limits as functional time series (FTS). An FTS is
a sequence {Xt : t ∈ Z}, where t denotes the time index, and
each Xt is a random function, say Xt ∈ L2([0, 1],R), represent-
ing the conformation of a minicircle at time t , seen as a con-
tinuous curve. The dynamics of the minicircles can be viewed
through the lens of the second-order structure of the time series,
which is contained in the collection of its lag-t autocovariance
operators: these contain the covariation of the random function
t time points apart. Understanding and comparing the dynamics
of CAP and TATA minicircles can therefore be translated into
the problem of estimation and inference for the second-order
structure of functional time series.

In particular, we wish to be able to detect and further local-
ize any differences either at the level of frequencies, and along
the length of the curves. Our methodological work is thus pre-
sented in parallel with theDNAmotivation, in the form of a case
study. The article is organized as follows: in Section 2, we present
the molecular dynamics simulation data on the TATA and CAP
minicircles, including the necessary preprocessing steps, and the
estimation of their functional dynamics through the spectral
density operator. Section 3 considers the problem of detecting
differences between the spectra of two time series, suchCAP and
TATA, by first comparing them at fixed frequencies—using a
test for comparing the spectrum that we introduce in this article
(Theorem 1)—and then adjusting for multiplicities to localize
the differences in the frequencies, while controlling the overall
significance level at which we pronounce detections. The detec-
tion of the differences between the CAP and TATA is further
investigated in Section 4, where we consider the problem of first
selecting frequencies at which the spectrum of CAP and TATA
are different, and then detecting and localizing their differences
on the minicircles, within each selected frequency. A supple-
mentary file collects necessary technical details, proofs of our
main results, and simulation studies.

2. Description of the Data

The dataset (produced by the group of Prof. John Maddocks,
Laboratory for Computation and Visualization in Mathemat-
ics andMechanics, Institut deMathématiques, EPFL, Lausanne,
Switzerland, http://lcvmwww.epfl.ch/.) of our case study con-
sists of the (time) trajectories of two DNA minicircles moving
freely in solution. These trajectories are constructed by means
of molecular dynamics (MD) simulations (Leach 2001; Fred-
dolino et al. 2006; Lankas, Lavery, and Maddocks 2006; San-
bonmatsu and Tung 2007; Mitchell, Laughton, and Harris 2011;
Mitchell and Harris 2013). Such MD simulations simulate the
trajectory of a strand of DNA in water by numerical integration
of a model taking into account multi-body interactions between
all the atoms of the minicircle and the aqueous solution (actu-
ally, this is an oversimplification, but the precise description of
MD simulations is not the goal of this article).

The two DNA minicircles are called CAP and TATA: they
are built of 158 base-pairs (BP), and differ only in 14 BP (see
Table 1). The MD simulation employed an integration step of 2
femtoseconds (2 · 10−15 sec) for the numerical integration algo-
rithm, and the data were recorded every picosecond (10−12 sec).
Time-wise, the data consist of 50,000 snapshots, where at each
snapshot one retains the three-dimensional coordinates of the
158 BP centers of the minicircle (see Section A in the sup-
plementary material for a description of the MD simulation
protocol). These are the result of a massive computation, sim-
ulating a particle system consisting of 200,000 particles, and
taking approximately 6000 CPU hours on a Cray XT5 at the
Swiss National Supercomputing Centre—an ambitious molec-
ular dynamics simulation (see also Freddolino et al. 2006; San-
bonmatsu and Tung 2007; Mitchell, Laughton, and Harris 2011,
for more ambitious MD simulations).

In principle, the resulting time series is not guaranteed to
be stationary (indeed, at least 300–500 nanoseconds seem to be
typically needed for convergence to equilibrium, see, e.g., Dans
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Table . The sequences of base-pairs for the CAP and TATA minicircles; the differences between the two sequences are in gray.

CAP
GATGAATTCACGGATCCGGTTTTTTGCCCGTTTTTTGCCGTTTTTTGCCCGTTTTTTGCCGTTTTTT
GCCCGTTTTTTCCGGATCCGTACAGGAATTCTAGACCTAGGGTGCCTAATGAGTGAGCTAACTCACA
TTAATTGCGTTGCGCCATGGAATC

TATA
GATGAATTCACGGATCCGGTTTTTTGCCCGTTTTTTGCCGTTTTTTGCCCGTTTTTTGCCGTTTTTT
GCCCGTTTTTTCCGGATCCGTACAGGAATTCTAGACCTAGGGTGCCTAATGAGTGCCCTTTTATAGC
TTAAACGCGTTGCGCCATGGAATC

et al. 2012, 2014; Lavery et al. 2014), but one expects its time
increments to be stationary, at least locally in time.We therefore
focus on the last 10,001 snapshots, and discard the first 39,999
snapshots to avoid burn-in period effects.

For each minicircle, the data we consider are 3D time series
{Mt ( j) : t = 1, 2, . . . , 10,001; j = 1, . . . , 158} ⊂ R

3, where t
denotes the time index (in picoseconds), and j is the BP index.
In other words,Mt ( j) ∈ R

3 gives the coordinates of BP j at time
t . In the sequel, we shall view the set {1, . . . , 158} as the quotient
groupZ/158Z, so thatMt ( j + k) has a meaning for all j, k ∈ Z.

The data are shown for various timepoints t in Figure 1. Since
the data can be rotated or translated without altering the infor-
mation they convey on the intrinsic minicircle dynamics, our
analysis should hinge on features that are invariant to the action
of the group of rigid motions. We therefore choose to work with
the curvature of the DNA minicircles, an invariant with respect
to this group (indeed an object typically studied in minicircle
experiments). Further to solving the problem of registration of
the data, focusing on the curvature also reduces the dimension-
ality of the data, transforming the object of study from a time
series of curves in R

3 to a time series of real-valued functions.

2.1. Preprocessing Steps

The estimation of curvature based on discrete noisy observa-
tions is often carried out using a plug-in approach. For instance,
Sangalli et al. (2009) used free-knot regression splines to esti-
mate the curve γ (t ), and then computed the curvature estimate

c(t ) = ∣∣γ̂ ′(t ) ∧ γ̂ ′′(t )
∣∣ / ∣∣γ̂ ′(t )

∣∣3 , (2.1)

where γ̂ (t ) ∈ R
3 is the estimated curve, u ∧ v denotes the

cross-product of u, v ∈ R
3, and |·| denotes Euclidean norm.

The performance of such techniques heavily depends on
the value of a smoothness parameter, the choice of which
can be rather subjective (Sangalli et al. 2009, sec. 4). Our
own experience with plug-in estimation of the curvature was
that it yielded estimates with too many degrees of freedom,
even with roughness penalization of the estimated curve, and
this symptom we attribute to the presence of the renor-
malization factor in (2.1). We therefore opted to start out
with a discrete version of curvature, motivated by subject-
specific knowledge on the larger scale behavior of DNA mini-
circles. Specifically, for each minicircle trajectory, we com-
puted the curvature trajectory {ct ( j) : t = 1, 2, . . . , 10,001; j =
1, . . . , 158} ⊂ R+, where ct ( j) is the curvature (inverse
radius) of the circle passing through the three points Mt ( j −
5),Mt ( j),Mt ( j + 5). Recall that for three points p1, p2, p3 ∈
R

3, this curvature is given by curvature(p1, p2, p3) = 2|
(p2 − p1) ∧ (p3 − p2)|/(|p2 − p1| · |p3 − p2| · |p3 − p1|).

The reason we selected triples separated by five base-pairs
(corresponding to indices j − 5, j, j + 5), instead of consecu-
tive ones (i.e., indices j − 1, j, j + 1), is that the DNA double
helix performs a complete rotation in 11-12 BP, on average; tak-
ing the curvature of the directly adjacent BP would represent
a highly local curvature measure, whereas the curvature com-
puted on further spaced BP is more in line with the coarser scale
at whichwewish to understand their dynamics. Awelcome side-
effect is that the resulting estimates aremore stable (less sensitive
to small perturbation of the BP centers). From a statistical point
of view, this procedure results in a smoothed version of the cur-
vature, discarding very local bends of the DNA, but retaining
larger scale bending.

Since the curvature is constrained to be positive, the cur-
vature functions c j(t ) do not lie in a linear space. Given that
functional data analyses typically hinge on linear space meth-
ods, we converted the curvature trajectories into elements of
a linear space by applying the transformation x �→ log(δ + x),
where δ > 0 is a fixed constant (see below), thus defining the
δ-linearized curvature by

dt ( j) = log(δ + ct ( j)), for all t, j. (2.2)

The constant δ prevents erratic fluctuations of d j(t ) when c j(t )
approaches zero. If δ is too small, the functions d j(·)will present
very large spikes, and if δ is too large, d j(·) will be essentially
constant. Based on an exploratory analysis, we set δ = 10−3,
which struck a balance between the two extremes (this choice
of δ is of course specific to our dataset). Figure S11 of the sup-
plementary material illustrates the role of δ.

Since the δ-linearized curvatures are discretely sampled ver-
sions of smooth curves, we transformed each function j �→
dt ( j) into a smooth curve τ �→ Yt (τ ), τ ∈ [0, 1], by smoothing
the scatterplot

(
j − 1
158

, dt ( j)
)

j=1,...,158
(2.3)

for each fixed t . This was done using a basis expansion (Ram-
say and Silverman 2005) with 80 periodic cubic B-splines (King,
Nguyen, and Ionides 2016), respecting the nature of the data as
closed loops. Our choice of 80 basis functions came from the
combination of considerations on the postulated degrees of free-
dom of the curvature (which should be fewer than the num-
ber of base-pairs), computational considerations, and graphical
goodness-of-fit assessment. It is of course specific to our dataset.
We also conducted the analysis presented in the rest of the arti-
cle with 40 and 60 basis functions, and the results were similar to
those obtainedwith 80 basis functions.We note that exploratory
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Figure . The DNA minicircles for various timepoints t (CAP in black, TATA in gray). The top plot of the four subfigures contains the projection of the DNA minicircles onto
the XY plane, and the plot below shows their projection on the Z-axis. The units of the X ,Y, Z axes are in angstroms (1 angstrom = 10−10 m).

plots revealed no need for further penalization in the smooth-
ing of the functions dt . Figure S12 of the supplementarymaterial
illustrates the smoothing process.

Exploratory analysis of the functional time series {Yt : t =
1, . . . , 10,001} revealed that the series exhibited a nonstation-
ary behavior coupled with a long memory behavior, as is nat-
ural with the movement of a rigid body. By contrast, the time

differenced curves, Xt := Yt+1 −Yt , exhibited a weakly depen-
dent stationary behavior, and so we focused on the series {Xt :
t = 1, . . . , 10,000} as our object of study. The model implicitly
assumed is, therefore,

Yt+1(τ ) = Yt (τ ) + Xt (τ ), τ ∈ [0, 1],
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Figure . Plot of the innovation process Xt of the linearized curvatures for CAP (dashed black curve) and TATA (solid gray curve) for various timepoints t .

where {Yt} is the δ-linearized curvature of the DNA minicir-
cle, and {Xt} is the stationary innovation process governing the
time-increments of {Yt}. Applying all these steps to the CAP
minicircles, respectively, TATA minicircles, we get two func-
tional time series, X1

t , respectively, X2
t (see Figure 2).

2.2. Estimation of the Dynamics

Let us start by introducing some useful notation. For u, v, f ∈
L2([0, 1],C), the usual inner product will be denoted by

〈u, v〉 = ∫ 1
0 u(τ )v(τ )dτ , where α is the complex conjugate

of α ∈ C, with corresponding norm ‖u‖ = √〈u, u〉. The ten-
sor product u ⊗ v will be the linear operator on L2([0, 1],C)

defined as (u ⊗ v ) f = 〈 f , v〉u.
The (second-order) dynamics of a stationary FTS {Xt :

t ∈ Z} are encoded in the collection of lag-t autocovariance
operators

Rt = E [(Xt − μ) ⊗ (X0 − μ)], t ∈ Z, (2.4)
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where μ = EXt . Inferences on these dynamics could therefore
be carried out bymeans of corresponding inferences on the indi-
vidual autocovariance operators. However, such an approach
encounters significant roadblocks, since the theory of the esti-
mation of the lag-t autocovariance operators without structural
assumptions (such as that of linearity, made in Mas & Pumo
(in Ferraty and Romain (2011)) is largely unexplored (with
the exception of Zhang and Shao (2015) who recently devel-
oped tests only for comparing the lag-0 autocovariance opera-
tor without structural assumptions). We choose to take a dif-
ferent approach, and estimate the complete dynamics through
a frequency domain approach, following the paradigm recently
introduced by Panaretos and Tavakoli (2013a).

In the frequency domain approach, the objects of interest are
no longer the lag-t autocovariance operators, but their Fourier
transform,

Fω = (2π)−1
∑
t∈Z

exp(−iωt )Rt , ω ∈ [−π, π], (2.5)

where i ∈ C is the imaginary number, i2 = −1. The object
{Fω : ω ∈ [−π, π]} is called the spectral density operator, and is
well defined under suitable summability conditions on the auto-
covariance operators (see Panaretos and Tavakoli 2013a, Propo-
sition 2.1). At each frequencyω, the operatorFω is a linear oper-
ator on L2([0, 1],C), associated with a spectral density kernel
fω, a complex valued surface [0, 1]2 � (τ, σ ) �→ fω(τ, σ ) ∈ C.
Various properties of the spectral density operator are given in
Panaretos and Tavakoli (2013a) and Tavakoli (2014); we remark
that f−ω = fω, and we therefore restrict our interest to the
range ω ∈ [0, π]. Intuitively, the spectral density operator is
the generalization of the spectral density matrix encountered in
multivariate time series (Brillinger 2001; Priestley 2001) to the
functional setting, and yields an analysis of variance decompo-
sition of the variance of the FTS, given by the inversion formula
Rt = ∫ π

−π
exp(iαt )Fαdα, t ∈ Z.

The reason we decide to carry out inference on the dynamics
of an FTS via a frequency domain approach—and not through
the autocovariance operators—is that the spectral density
operator is inextricably linked with the so-called Cramér–
Karhunen–Loève decomposition of the functional time series
(and the associated harmonic principal component analysis),
which elucidates its complete dynamical properties, separating
the temporal, functional, and stochastic components (Panaretos
and Tavakoli 2013b; Tavakoli 2014; Hörmann, Kidziński, and
Hallin 2015). The Cramér–Karhunen–Loève decomposition
also elucidates why spectral density operators are equally impor-
tant across all frequencies (under no prior assumption concern-
ing the dynamics of the time series). Furthermore, working in
the frequency domain has a crucial whitening effect: the sample
spectral density operator is asymptotically independent at dis-
tinct frequencies. In contrast to these properties, it is not clear
what relative importance one should give to each lag-t autoco-
variance operators in the assessment of dynamics of an FTS, and
the sample lag-t autocovariance operators are asymptotically
correlated (Mas & Pumo in Ferraty and Romain 2011), which
would make a multiplicity correction approach (see Sections
3 and 4) more involved, and potentially considerably less
powerful.

Notice also that for f , g ∈ L2[0, 1], 〈 f ,Fα f 〉 is the power
spectrum of the one-dimensional time series 〈Xt , f 〉, while
〈 f ,Fαg〉 is the cross spectrum of 〈Xt , f 〉 and 〈Xt , g〉. In this
sense, the spectral density operator can be used to probe any
continuous linear functional of the dynamics of the process (a
fact that will be exploited in Section 4).

The estimation of the spectral density operator is carried out
by first computing the discrete Fourier transforms of the FTS,
and then smoothing its empirical covariance (called the peri-
odogram operator), with a kernel functionW (·) of bandwidth
BT (see Panaretos and Tavakoli 2013a for details). The first step
can be done using the Fast Fourier Transform, whose calcu-
lation is most efficient when the length of the series is highly
composite.

As usual, the bandwidth parameter BT needs to satisfy
the conditions BT → 0 and TBT → ∞ as T → ∞, for the
asymptotic results to hold. The choice of BT governs also the
bias/variance trade-off for the estimation of the spectral density
operator, similarly to nonparametric regression. Inferential pro-
cedures can then be constructed using Theorem 1 and Panaretos
and Tavakoli (2013a, Theorem 3.7), which gives a central limit
theorem for the estimated spectral density operator at distinct
frequencies. For finite samples, it is crucial to notice that the
central limit theorem effect emerges because the spectral den-
sity estimator at a given frequency ω is obtained by weighted
averaging of (2m + 1) approximately independent summands,
where m = �TBT/2π�. Following Brillinger (2001, p. 252), the
equivalent number of independent pieces of information used
to estimate the spectral density estimator at frequency ω can be
defined as

n(ω,m, κ ) = m/κ2, (2.6)

where κ2 = ∫
R
W 2(x)dx. The order of n(ω,m, κ ) plays there-

fore a role similar to the number of iid summands when apply-
ing the classical central limit theorem, and should be taken
into account before making any inferential statements based on
asymptotics.

In the present setup, we chooseBT = 0.158, a choice that cor-
responds to the heuristic that BT ∼ O(T−1/5) asymptotically, to
minimize the mean square error (Brillinger 2001, p. 251). We
choose W (x) to be the Epanechnikov kernel (e.g., Wand and
Jones 1995),W (x) = 3

4 (1 − x2) if |x| < 1, and zero otherwise.
These choices implym = 252 and n(ω,m, κ ) = 420.We denote
by F a,(T )

ω the estimated spectral density operators, or sample
spectral density operators, of Xa

t , for a = 1, 2.
The graphical representation of the sample spectral density

operators is not straightforward: for each frequency ω ∈ [0, π],
one has an operator on L2([0, 1],C): the corresponding trace
norm is shown in Figure 3 for CAP and TATA. The (modu-
lus of the) sample spectral density kernels f a,(T )

ω , a = 1, 2, asso-
ciated with the sample spectral density operators, are depicted
in Figure S13 of the supplementary material. We notice that
most of the variance is distributed along the high-frequency
end of the spectral density operator, meaning that the series
Xt consists mainly of high-frequency oscillations, and that the
low-frequency oscillations contained in the linearized curvature
series Yt mostly cancel out when taking its time differences to
form Xt (this is not surprising considering the transfer function
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Figure . Plot of the trace of the spectral density operator. Notice that the spectral density operator of CAP has consistently a larger magnitude than the spectral density
operator of TATA.

induced by a time differencing). Figure S13 of the supplemen-
tary material illustrates that most of the nuclear norm of the
spectral density operator is near the diagonal of the sample spec-
tral density kernels, and then falls off sharply as onemoves away
from the diagonal. The interpretation of this is that the series Xt
has strong local interactions, in the sense that Xt (τ ) and X0(σ )

are interacting strongly for |τ − σ | small, say |τ − σ | < ε′, and
much more weakly for |τ − σ | > ε′. This reflects the fact that
the series Xt is locally smooth, but globally quite rough, as can
be seen in Figure 2.

2.3. Comparison of the Spectral Density Operators

Though the traces of the sample spectral density operators of the
CAP and TATA series appear different, and though small dif-
ferences between their sample spectral density kernels are visi-
ble, it is not a priori clear whether these differences are indeed
statistically significant. The next section sets out to address this
issue, by introducing inferential tools for comparing two spec-
tral density operators on a grid of frequencies, and localizing any
detected differences at the level of frequency.

3. Comparing and Localizing Spectral Differences by
Frequency

Comparing the second-order dynamics of the functional time
series X1

t and X2
t can now be formalized as testing the equality

of their spectral density operators. More precisely, ifHω :“F 1
ω =

F 2
ω,” for ω ∈ [0, π], we wish to test

⋂
ω∈[0,π]

Hω against “Hω fails for some ω ∈ [0, π].”

We will take a multiple testing approach to this problem by first
constructing a test for each Hω, marginally, and then enforcing
a multiplicity correction.

3.1. Comparing the Spectral Density Operator at a Fixed
Frequency

To test Hω for a fixed ω ∈ [0, π], we construct a test inspired
by the class of tests introduced by Panaretos, Kraus, and Mad-
docks (2010) for testing the equality of covariance operators
in iid collections of Gaussian random functions. The key idea
is that, in light of the central limit theorem of Panaretos and
Tavakoli (2013a, Theorem 3.7), the estimated (or sample) spec-
tral density operator F (T )

ω can be roughly seen as the empiri-
cal covariance operator of a sample of TBT/2π approximately
iid replications of the discrete Fourier transform of {Xt} at fre-
quency ω. Under this heuristic, one can construct a test statistic
in the spirit of Panaretos, Kraus, and Maddocks (2010), by con-
sidering the Hilbert–Schmidt norm of the difference between
the sample operators, F 1,(T )

ω − F 2,(T )
ω , restricted on a sub-

space of Hilbert–Schmidt space of dimension K. The choice
of this subspace is such that it retains the bulk of the Hilbert–
Schmidt norm of the difference, subject to its dimension being
K. When Hω is valid, this is achieved by projecting onto the
(random) subspace generated by the tensor products of the first
K estimated eigenfunctions of F 1

ω = F 2
ω. Letting (μ̃ω

i , ϕ̃ω
i )∞i=1

be the eigenvalue/eigenfunction pairs of the pooled spectral
density operator (F 1,(T )

ω + F 2,(T )
ω )/2, and denoting by D(T )

ω =√
TBT (F 1,(T )

ω − F 2,(T )
ω ) the rescaled difference between the

two sample spectral density operators at ω, we consider the
statistic

�̃
(T )
K (ω) =

K∑
i, j=1

∣∣∣〈D(T )
ω ϕ̃ω

j , ϕ̃
ω
i

〉∣∣∣2(
1 + 1{0,π}(ω)

)
4πκ2μ̃ω

i μ̃ω
j
, (3.1)

where κ2 = ∫
R
W 2(x)dx is the L2-norm of the weight function

W (x). Each component in the sum comprising the test statistic
measures the squared norm of the component of the difference
D(T )

ω that lies in the subspace spanned by ϕ̃i ⊗ ϕ̃ j, renormal-
ized according to its asymptotic variance. The indicator in the
denominator is a correction term for the frequenciesω ∈ {0, π},
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at which the sample spectral density operator has an increased
variance.

The heuristics leading to the construction of the test statistic
can indeed be made rigorous, and the following Theorem estab-
lishes that the asymptotic distribution of our test statistic under
the null hypothesis is chi-squared. Its proof is given in Section C
of the supplementary material.

Theorem 1. Let K1, . . . ,KJ be fixed nonnegative integers,
ω1, . . . , ωJ ∈ [0, π] be a fixed number of distinct frequencies.
Assume that Conditions B.1 of the supplementary material
hold, and that BT → 0 and TBT → ∞ as T → ∞. Further-
more, assume that for each ω j, the first Kj eigenvalues of the
spectral density operator Fω j are all distinct, and nonnegative.
Then, under the null hypothesis H0 = ∩J

j=1Hω j , the test statis-
tics �̃(T )

Kj
(ω j), j = 1, . . . , J, converge in distribution to indepen-

dent random variables �Kj (ω j), where

�Kj (ω j) ∼
{

χ2
Kj (Kj+1)/2 if ω j ∈ {0, π},

χ2
K2

j
otherwise. (3.2)

The truncation level K—which is assumed to be fixed in the
asymptotic framework of Theorem 1—represents a regulariza-
tion parameter whose choice governs a bias/variance trade-off
reflected in Type I and Type II error probabilities. Small val-
ues of K will guarantee the preservation of the nominal level
of the test under the null, but are likely to incur “bias-related”
Type II error under the alternative, when differences in the two
operators are to be found in dimensions higher than K. A more
aggressive choice of a large K can result to instabilities due to
the ill-posedness of the problem, resulting in Type I and Type II
errors alike. In principle, the choice of truncation level K should
be dependent on the corresponding frequency ω j at which the
test is carried out. This is because a spectral density operator
Fω may exhibit a different rate of spectral decay as ω varies.
At a fixed sample size, the optimal value of Kj(T ) depends in
a complicated manner on the eigenvalues, and the gaps between
the eigenvalues, of the spectral density operator at the corre-
sponding frequency. Though a theoretical investigation along
this avenue would be of interest (using results from, e.g., Fremdt
et al. 2014), it is beyond the scope of our article. In practice,
a frequency-dependent choice may be made by choosing K =
K(ω), which optimizes a model selection-type criterion.We use
a fit/penalty trade-off criterion that is inspired by the pseudo-
AIC (Akaike information criterion) criterion of Yao,Müller, and
Wang (2005), and its two-sample generalization introduced by
Panaretos, Kraus, and Maddocks (2010):

AIC(K, ω) = GOF(K, ω) + PEN1(K, ω) + PEN2(K, ω),

(3.3)

where GOF(K, ω) is a goodness-of-fit criterion, and
PENa(K, ω), a = 1, 2, penalize for overfitting of the spec-
tral densities F a,(T )

ω , a = 1, 2. We propose taking

GOF(K, ω) =
Nb∑

k=K+1

〈(
F 1,(T )

ω − F 2,(T )
ω

)
ϕ̃ω
k , ϕ̃ω

k
〉

(3.4)

and

PENa(K, ω) =
⎛
⎝ Nb∑

j=1

λ̂ j

⎞
⎠ Nb∑

j=1

〈
F a,(T )

ω (K) ϕ̂a,ω
j , ϕ̂a,ω

j

〉
n(ω,m, κ )λ̂a,ω

j

,

a = 1, 2, (3.5)

where (μ̂a,ω
j , ϕ̂a,ω

j ) denotes the jth eigenvalue/eigenvector pair
of F a,(T )

ω , a = 1, 2; j = 1, 2, . . ., and

F a,(T )
ω (K) =

K∑
k1,k2=1

〈
F a,(T )

ω ϕ̃ω
k1 , ϕ̃

ω
k2

〉
ϕ̃ω
k1 ⊗ ϕ̃ω

k2 , a = 1, 2,

is the projection of the sample spectral density operator onto the
first K eigenspaces of the pooled sample spectral density opera-
tor (F 1,(T )

ω + F 2,(T )
ω )/2. The constant n(ω,m, κ ) is defined in

(2.6), and depends only onω,m = �TBT/2π�, and κ . The intu-
ition behind this criterion is that it corresponds to the AIC crite-
rion of Panaretos, Kraus, and Maddocks (2010, sec. 3.3) had we
observed n(ω,m, κ ) iid complex curves from a random func-
tion with covarianceF a

ω , for a = 1, 2. Even though these curves
are not observed in our context, the choice of n(ω,m, κ ) reflects
the number of independent pieces of information used to con-
struct our estimate F a,(T )

ω .
We also propose a variant of the AIC criterion, by using the

following penalty in lieu of (3.5),

PEN∗
a(K, ω) =

⎛
⎝ Nb∑

j=1

λ̂ j

⎞
⎠ Nb∑

j=1

〈
F a,(T )

ω (K) ϕ̂a,ω
j , ϕ̂a,ω

j

〉
n(ω,m, κ )

√
λ̂a,ω
j γ̂ a,ω

j

,

a = 1, 2, (3.6)

where γ̂ a,ω
1 = λ̂a,ω

1 − λ̂a,ω
2 and γ̂ a,ω

l = min{λ̂a,ω
l−1 − λ̂a,ω

l , λ̂a,ω
l −

λ̂a,ω
l+1}, l = 2, . . . , and a = 1, 2. The corresponding pseudo-AIC

criterion is

AIC∗(K, ω) = GOF(K, ω) + PEN∗
1(K, ω)

+PEN∗
2(K, ω). (3.7)

The difference between AIC and AIC∗ is that the second cri-
terion takes into account the difficulty of estimating the eigen-
structure of the pooled spectral density operator, in addition
to penalizing for the relative roughness of the pooled spectral
density operator in comparison to F 1,(T )

ω and F 2,(T )
ω , respec-

tively (see Bosq 2000, Lemma 4.3). We also note that both
criteria are invariant to scaling of the sample spectral density
operator.

Numerical simulations (see Section D of the supplementary
material), conducted with the automatic choice of K = K(ω)

using either AIC and AIC∗, suggest that our testing procedure
respects the level of the test in a variety of settings, unless for
very low sample size when K(ω) is chosen by AIC (see Table S1
of the supplementary material). It should be noted that our
procedure is slightly conservative in general, due to the multiple
testing approach taken (Benjamini and Hochberg 1995). The
numerical simulations suggest that K(ω) should be selected by
means of AIC in settings where the eigenvalues of the spectral
density operator decay steeply, and that AIC∗ should be used if
the eigenvalues of the spectral density operator decay slowly (we
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Figure. Truncation levelsK(ω) as chosenby theAIC∗ criterion (.). The small ticks on thehorizontal axis represent thegrid of frequencies� forwhich the test is computed.

note that the power using either AIC criterion is not necessarily
higher than that obtained using a prechosen value of truncation
level K; however it is not clear how to choose K a priori).
Since our DNA minicircle data correspond to the second case,
we shall use AIC∗ to choose K(ω) in the remainder of the
article.

3.2. Localization of Differences on the Frequencies

Recall thatHω denotes the null hypothesisF 1
ω = F 2

ω. To test the
global null hypothesis HG := ⋂

ω∈[0,π] Hω, we will first obtain
marginal p-values for each of the null hypotheses Hω, ω ∈ �,
where � := {ω1, . . . , ωJ} ⊂ [0, π] is a grid of frequencies, and
then adjust the p-values to account for multiplicity effects. The
p-values will be based on the asymptotic distribution of test
statistic �̃

(T )
K (ω), given by Theorem 1.

The results of applying the automatic truncation level rule
(3.7) to our DNA minicircle dataset are shown in Figure 4. We
notice that the selected values of K(ω) vary between 21 and 25.
The corresponding (approximate) p-values are

p j = P

(
�̃

(T )

K(ω j )
(ω j) < χ2

ν(ω j )

)
, j = 1, . . . , J,

where ν(ω j) = K(ω j)[K(ω j) − 1]/2 if ω j ∈ {0, π}, and
ν(ω j) = K(ω j)

2 otherwise. The choice of the grid of frequen-
cies at which the p-values are computed should be guided by a
priori knowledge of the nature of the alternative hypothesis—
provided there is any such knowledge—see Section 3.3. In our
case, we chose a grid of 81 frequencies, which is shown in
Figure 4.

Adjusting the p-values for multiplicities can be done to con-
trol the false discovery rate (FDR; see Benjamini and Hochberg
1995), the expected value of the proportion of false rejections

among all rejections. In terms of the FDR, since the p-values
pi and p j are dependent for |ωi − ω j| < 0.15, but approxi-
mately independent for |ωi − ω j| > 0.15, we are in the con-
text of dependence in finite blocks, and the original Benjamini–
Hochberg (BH) algorithm for controlling the FDR is valid
(Storey, Taylor, and Siegmund 2004). We show the adjusted
p-values using the BH procedure in Figure 5. We notice that the
two spectral density operators appear to be highly significantly
different at all frequencies. We also conducted numerical simu-
lations to assess the performance and validity of our procedure
in finite sample; these suggest that the BH procedure controls
the Type I error for small sample sizes (see Section D of the sup-
plementary material).

Since these adjusted p-values are remarkably small (they
range from 10−30 to 10−140), and our simulations in Sec-
tion D of the supplementary material demonstrate the valid-
ity of the test procedure, we perform a “sanity check” to
make sure that these p-values are not the result of any
remaining transient (nonstationary) behavior: we consider what
p-values would be produced when comparing the dynamics
of two time-separated stretches of the same FTS. Using the
procedure described in this section, we compare the spectral
density operators of the two FTSs {XCAP

t : t = 1, . . . , 1000}
and {XCAP

t : t = 9001, . . . , 10,000}, which are assumed to be
approximately independent under weak dependence. The null
hypothesis should be valid, of course, provided stationarity is
not violated. The adjusted p-values, shown in Figure S14 of the
supplementary material, suggest that the spectral density oper-
ator of CAP is indeed stable in time (across all frequencies), in
accordance with the hypothesis of stationarity made earlier, and
supporting the soundness of the adjusted p-values presented in
Figure 5. The same conclusions hold for TATA (Figure S14 of
the supplementary material).

Figure . Adjusted p-values (using the BHprocedure) for testing the equality of the spectral density operator of CAP and TATA,with the truncation levelK(ω) automatically
chosen at each frequency ω with the AIC∗ criterion (.). The small ticks on the horizontal axis represent the grid of frequencies � for which the test is computed.
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3.3. Choice of the Discretization Grid�

The choice of the grid � (and therefore J) is related to finer
knowledge of potential departures in the direction of the alter-
native against which we wish to test the global null HG =
∩ω∈[0,π]Hω:

Power for global differences between the two spectral density oper-
ators: If we believe that the true difference between the two
spectral density operators is going to be on a large interval
of [0, π], J should be small, so that the power of the test
is not lost because of multiple comparisons. If � ⊂ [0, π]
is chosen such that |ωi − ω j| ≥ 2BT , for all ωi �= ω j ∈ �,
then the p-values are approximately independent, and one
could control the familywise error rate via Hochberg’s pro-
cedure (Dudoit, Shaffer, and Boldrick 2003), if this is what is
desired.

Power for narrow banded differences between the two spectral
density operators: If we believe that the true difference is in a
very narrow band of the spectral density operator, for exam-
ple, Hω is false only for |ω − ω′| < ε, with ω′ ∈ [0, π] and
ε > 0 small, then � should be chosen to be a dense grid over
[0, π]. The largest gap between any two consecutive frequen-
cies in � will indicate approximately smallest bandsize ε for
which the test would be able to detect departures from the
global null HG.

Frequencies near {0, π}: Although we expect �̃
(T )
K (ω j) to fol-

low, for large T , approximately a χ2
K2 distribution for any

ω j �∈ {0, π}, the approximation might not hold for frequen-
ciesω j very close to {0, π}. This happens because the asymp-
totic distribution of �̃(T )

K (ω) is χ2
K(K+1)/2 for ω ∈ {0, π}, but

χ2
K2 for ω ∈ (0, π ), and because �̃

(T )
K (ω) is continuous in ω.

Therefore, for ω j close to {0, π}, the approximate distribu-
tion of �̃

(T )
K (ω j) is a mixture of χ2

K(K+1)/2 and χ2
K2 random

variables, with unknown mixture proportion. We therefore
recommend that all the frequencies ω ∈ �, with ω �∈ {0, π},
be at least at distance BT of the frequencies {0, π}.

Understanding how the power varies with the number of
frequencies J at which the spectral density operators are com-
pared is important, since there may be situations in which no
prior knowledge on the spectral density operators is available.
As is turns out, there is a heuristic upper limit to the gridsize
because

1. The test used is continuous in ω for constant K, that is,
ω → �

(T )
K (ω) is continuous, conditionally on (Xt )

T
t=1.

2. Computationally, it is more efficient to compute the
sample spectral operators, and hence �̃

(T )
K (ω), on the

Fourier frequencies �∗ = {2πs/T : s = 0, . . . ,T/2}, or
on a subset of them.

If the multiple correction is done using the false discovery
rate (FDR), numerical simulations (Section D.2) suggest that
conditionally on the observed functional time series, the FDR-
adjusted p-values (the q-values) are approximately stable as the
grid becomes as dense as �∗ (see Figure S9 of the supplemen-
tary material). Concerning the power of the test, it seems that
though a very sparse grid may yield more power in some situa-
tions, in other situations, slightly denser grids yield considerably

more power. However, choosing the densest grid�∗ results gen-
erally in a loss of power, due to multiplicity corrections and the
continuity of the test in the frequencies (see Figure S10 of the
supplementary material).

4. Localizing Differences in Frequency and Along
Curvelength

We now wish to qualify the difference between CAP and TATA
dynamics at a finer level: we wish to first detect the spe-
cific frequencies at which CAP and TATA curves differ (the
significant frequencies), and then localize the region on the
minicircles (curves), within each significant frequency, where
these differences occur. This serial framework is quite nat-
urally amenable to recent selective multiple testing method-
ology proposed by Benjamini and Bogomolov (2014). Note
that if one wishes to search for dynamical differences between
the two series at a frequency ω0 and attributable to the
covariation between two regions [τ1, τ2] and [τ3, τ4] along
the curves, it suffices to consider hypotheses comparing
linear contrasts 〈F 1

ω0
g, h〉 and 〈F 2

ω0
g, h〉, for g, h ∈ L2[0, 1]

two contrast functions concentrated on [τ1, τ2] and [τ3, τ4],
respectively.

The contrasts we choose to employ are the periodic B-spline
basis functions used to represent the curves (King, Nguyen,
and Ionides 2016). Consequently, we base our procedure on the
differences in the (i, j)th basis coefficient between the spec-
tral density operator of CAP and TATA, at a given frequency
ω. Let us denote by faω, respectively, fa,(T )

ω , the 80 × 80 coeffi-
cient matrices with respect to the periodic B-spline basis (King
et al. 2010) of the true spectral density operator, respectively,
the sample spectral density operator, at frequency ω, for the
time series Xa

t , a = 1, 2. We shall call faω the projected spectral
density operator, and fa,(T )

ω the projected sample spectral den-
sity operator, and denote by fω(i, j) the (i, j)th entry of the
matrix fω. The local null hypotheses we wish to test for are of the
form

Hω(i, j) : f1ω(i, j) = f2ω(i, j), i, j = 1, . . . , 80;ω ∈ [0, π].

By symmetry of the projected spectral density operator, we
restrict ourselves to the indices 1 ≤ i ≤ j ≤ 80. We point out
that this approach is different from a classical multivariate
approach, as discussed in Remark 2.

For each frequency ω and each 1 ≤ i ≤ j ≤ 80, assuming
fω(i, i)fω( j, j) �= 0, we can use the projected sample spectral
density operator to construct a p-value p(ω; i, j) for the null
hypothesisHω(i, j), as described in Section E of the supplemen-
tary material. The p-values are only computed on a subgrid� =
{ω1, . . . , ωL} ⊂ [0, π], which is chosen such that |ωi − ω j| ≥
2BT , so that the p-values across different ω j ’s are approximately
independent (see the discussion in Section 3.3).

We choose to select significant frequencies and localize the
differences between CAP and TATA in a way that controls the
expected average of the false discovery proportion over the sig-
nificant frequencies (Benjamini and Bogomolov 2014). Tomake
this statement precise, let pl = {p(ωl; i, j) : 1 ≤ i ≤ j ≤ 80} be
the set of p-values at frequency ωl , and P = {p1, . . . ,pL} be
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the set of all p-values over the grid �. Let S(P) be the selec-
tion procedure for the significant frequencies, based on all the
p-values P, that is, S(P) ⊂ �, and |S(p)| denote the number of
significant frequencies. Let FDP(ω) = V (ω)/R(ω) be the false
discovery proportion at frequency ω, where V (ω) denotes the
(unknown) number ofwrong rejectionswithin frequencyω, and
R(ω) denotes the total number of rejections at frequencyω. The

error criterion we will seek to control is

E

⎡
⎣ ∑

l∈S(P)

FDP(ωl )/max {|S(P)|, 1}
⎤
⎦. (4.1)

Notice that if the selection procedure S is carried out without
relying on the data, (4.1) simplifies to

∑
l∈S FDR(ωl )/|S|, the

Figure . The plots show the regions on the minicircles, for each frequency, where the spectral density operator of CAP and TATA are overall significantly different at a 1%
level (with respect to the error criterion (.)). Each plot represents the regions of differences (in black) between the spectral density kernels of the twominicircles. The two
gray vertical and horizontal bands correspond to the region where the base-pair sequences of the two DNAminicircles are different.
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average FDR over the selected frequencies, where FDR(ωl ) =
E[V (ωl )/R(ωl )].

To select the significant frequencies and select the null
hypotheses to reject within each significant frequency while
controlling the expected average FDP (4.1) at the level α, we use
the following procedure (see Theorem 1 and sec. 5, Benjamini
and Bogomolov 2014):

1. Adjust, within each frequency ωl , the p-values pl for the
control of the FDR, and denote the result by ql , also
called q-values (see Remark 1).

2. Select the significant frequencies S by applying
the BH procedure to the set of minimum q-values
{min q1,min q2, . . . ,min qL}.

3. Within each significant frequency ωl, l ∈ S, reject
the null hypotheses whose corresponding q-value are
smaller than |S|α/L.

In addition to controlling the error criterion (4.1), this pro-
cedure has also the additional property that it controls the FDR
at the level of the frequencies. Notice however that the fre-
quencies selected as significantly different by this method need
not be exactly the same as the ones selected by the method of
Section 3.

The result of applying this procedure to our minicir-
cle data with α = 0.05, and on the grid of frequencies
� = {0, 0.38, 0.77, 1.15, 1.57, 1.95, 2.34, 2.72, 3.14} is shown
in Figure 6 in the form of zero-one plots, which exhibit graph-
ically the regions where the spectral density operator of CAP
and TATA differ significantly at a 1% level. We notice first that
all the tested frequencies are significant, which is not surpris-
ing since the frequency tests (Section 3) suggested that the null
hypothesisHω for each fixed frequency was confidently rejected.
We also see that the rejected hypotheses are mostly situated
on the diagonal of the spectral density operator, that is, the
rejected nulls are mostly of the formHω(i, j) with |i − j| small.
This signifies that the differences in the dynamics of CAP and
TATA curves are primarily due to local interactions (between
Xt (τ ) and X0(σ ) for |τ − σ | small) differ. This is not surpris-
ing since we have already seen (in Section 2.2) that most of the
covariation of the minicircles stems from their local interac-
tions. An interesting observation is that the detected differences
between the spectral density operators of the two minicircles
do not exclusively reside in the region where their BP sequence
is different (see Table 1), but extend to other regions of the
minicircles.

Remark 1 (p -Value adjustment within each frequency). Since
the p-values pl = {p(ωl; i, j) : 1 ≤ i ≤ j ≤ 80} are correlated
with a nontrivial correlation structure (see, e.g., (E.2) of the sup-
plementary material), we cannot use the BH procedure to con-
trol the FDR, nor more recent procedures (which require, e.g.,
dependence in finite blocks, see Storey, Taylor, and Siegmund
2004; Schwartzman, Dougherty, and Taylor 2008). We there-
fore use the conservative version of FDR, which works under
arbitrary dependence structure of the p-values (Benjamini and
Yekutieli 2001, Theorem 1.3) to obtain the q-values ql . Never-
theless, numerical simulation that we carried out to assess the
validity of our procedure suggested that the BHprocedure seems
to control the FDR within each frequency. Further work along
this line would be of interest.

Remark 2 (Differences withmultivariate analysis). Although the
idea of comparing at the level of basis coefficients seems like
a multivariate approach, it differs from it in that the choice of
the basis functionswill influence the qualitative conclusions that
can be drawn from the analysis. Our choice of a periodic B-
spline basis allows one to distinguish differences between CAP
and TATA that are very localized on the minicircles. Another
choice could be that of a wavelet basis, which would allow one
to detect differences between CAP and TATA across multiple
scales. The choice of the basis is therefore intimately related
to the directions (in function space) in which the test is most
powerful.

5. Concluding Remarks

We have introduced a method for comparing the dynamics
of two functional time series (FTS) at a hierarchy of levels,
through a frequency domain approach. Our method was illus-
trated through a case study in molecular biophysics, and specif-
ically aimed at detecting sequence-dependent effects on the
molecular dynamics of DNA at persistence length.

Our procedure is based on a test for comparing the spectral
density operators of two FTSs at fixed frequencies. As a first step,
this test can be used in combination with multiple testing pro-
cedures to detect differences between the spectral density oper-
ators of FTSs, and enables localizing at which frequencies the
differences occur, while controlling an overall error measure. As
a second step, one can compare the spectral density operators
of two FTSs jointly in frequencies and along the curvelength,
by first localizing differences in the frequencies, and then iden-
tifying their differences along the curvelength, within each fre-
quency, while controlling the average false discovery rate over
the selected frequencies. We conducted numerical simulations
to assess the strength of our method in finite samples, and its
robustness to “adversarial” setups.

Our case study indicates that the dynamics of the two DNA
minicircles we studied (CAP and TATA) seem to be globally
significantly different, across every fluctuation frequency, at
least at the given MD simulation. A finer investigation of their
differences—along the curvelength— show signs of an inter-
esting phenomenon: the dynamics of CAP and TATA, though
being mainly local, seem to be not only limited to the region
where their base-pairs are different, but to extend to other
regions of theDNAminicircles. This suggests that a local change
of base-pairs might induce a global change of dynamics through
a “propagation effect” along the DNA minicircle (see also Kim
et al. 2013). Though the effect appears to affect the entire DNA
minicircle in our case study, it is not clear whether the effect’s
intensity is fading with distance, and if it would have affected
only part of dynamics had the DNA minicircle been longer.
Another important point to mention is that though the differ-
ence between CAP and TATA were strongly statistically signifi-
cant (the largest adjusted p-value for testing the equality of their
spectral density operators was smaller than 10−20), a bare eye
examination of the data does yield any hints on differences in
their dynamics.

Our method relies on assumptions on the stationarity and
weak dependence of the underlying FTSs. To validate our find-
ings, we performed a “sanity check” by searching for differences
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in the spectral density operators of each FTSs, estimated using
the first 1000 and last 1000 timepoints of each FTS. No differ-
ence was detected, suggesting that the assumption of stationar-
ity is not violated. Furthermore, exploratory analysis of the FTSs
revealed that the weak dependence assumption is acceptable.

To our knowledge, this work is the first attempt of com-
paring the entire second-order dynamics of FTSs, and local-
izing their differences across frequencies, and within frequen-
cies along the curvelength. This also appears to be the first
time that a functional data analysis has been employed to study
the coarse-grained molecular dynamics of DNA, and indeed
that significant dynamical sequence-dependent differences have
been statistically quantified in a functional setup. Moreover,
the method we propose does not hinge on any linearity or
Gaussian assumption on the underlying FTSs, but on station-
arity and moment-type weak dependence assumptions. This
is particularly fitting in the case of DNA where the scaling
limit models are far from clear, and potentially non-Gaussian;
and indeed, given the rigid body nature of DNA, existence of
moments of all orders naturally leads to moment-type mixing.
A drawback of our method, due to our model-free and fre-
quency domain approach, is that interpretation is not straight-
forward (though the Cramér–Karhunen–Loève decomposition,
Panaretos and Tavakoli 2013b, can be used to this aim). Poten-
tial extensions of our work could be in the direction of tests
for stationarity (similar to our “sanity check”), development of
bootstrap version of our tests to take into account the local
dependency (in frequencies) of the sample spectral density
operator, or incorporation of the theory of excursion sets of
Gaussian processes for the localization of the difference along
curvelength.

A note of caution is that, even though the differences detected
between the spectral density operators are statistically signifi-
cant, we do not claim over-arching conclusions on the nature
and effect size of these differences: this would require fur-
ther and finer analyses (e.g., Freddolino et al. 2006; Sanbon-
matsu and Tung 2007) and of course may also require more
than one set of MD trajectories. Still, our preliminary results
can hopefully serve as a starting point for further work on
the DNA context, and as a case study illustrating the scope
and potential of functional time series inference in biophysical
modeling.

SupplementaryMaterials

The supplement contains themolecular dynamics simulation protocol (Sec-
tionA), the technical assumptions of ourmain results (Section B), the proof
of Theorem 1 (Section C), and numerical simulations (Section D).

R Package The R code implementing the methods of this
article is implemented in the R package ftsspec available at
https://cran.r-project.org/web/packages/ftsspec/index.html. The data gen-
erated and simulations studies are available at https://www.repository.
cam.ac.uk/handle/1810/253695*.
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Hörmann, S., Kidziński, Ł., and Kokoszka, P. (2015), “Estimation in Func-
tional Lagged Regression,” Journal of Time Series Analysis, 36, 541–561.
[1021]

Hörmann, S., and Kokoszka, P. (2010), “Weakly Dependent Functional
Data,” Annals of Statistics, 38, 1845–1884. [1021]

Horváth, L., Hušková, M., and Rice, G. (2013), “Test of Indepen-
dence for Functional Data,” Journal of Multivariate Analysis, 117,
100–119. Available at http://www.sciencedirect.com/science/article/pii/
S0047259X13000195. [1021]

Horváth, L., and Kokoszka, P. (2012), Inference for Functional Data
With Applications (Springer Series in Statistics), New York: Springer.
[1020,1021]

Horváth, L., Kokoszka, P., and Reeder, R. (2013), “Estimation of the Mean
of Functional Time Series and a Two-Sample Problem,” Journal of the
Royal Statistical Society, Series B, 75, 103–122. [1020,1021]

Horváth, L., Kokoszka, P., andRice,G. (2014), “Testing Stationarity of Func-
tional Time Series,” Journal of Econometrics, 179, 66–82. Available at
http://www.sciencedirect.com/science/article/pii/S0304407613002327.
[1021]

Horváth, L., and Rice, G. (2015a), “Testing for Independence Between
Functional Time Series,” Journal of Econometrics, 189, 371–382. [1021]

——— (2015b), “Testing Equality of Means When the Observations are
From Functional Time Series,” Journal of Time Series Analysis, 36, 84–
108. [1021]

Horváth, L., Rice, G., and Whipple, S. (2014), “Adaptive Bandwidth Selec-
tion in the Long Run Covariance Estimator of Functional Time Series,”
Computational Statistics & Data Analysis, 100, 676–693. [1021]

Kahn, J. D., and Crothers, D. M. (1992), “Protein-induced Bending and
DNA Cyclization,” Proceedings of the National Academy of Sciences, 89,
6343–6347. [1022]

Kim, S., Broströmer, E., Xing, D., Jin, J., Chong, S., Ge, H., Wang, S., Gu, C.,
Yang, L., Gao, Y. Q., Su, X.-D., Sun, Y., and Xie, X. S. (2013), “Probing
Allostery Through DNA,” Science, 339, 816–819. [1032]

King, A. A., Nguyen, D., and Ionides, E. L. (2016), “Statistical Inference for
Partially ObservedMarkov Processes via the R Package pomp,” Journal
of Statistical Software, 69, 1–43. [1023,1030]

Kokoszka, P., and Reimherr, M. (2013), “Asymptotic Normality of the Prin-
cipal Components of Functional Time Series,” Stochastic Process and
their Applications, 123, 1546–1562. [1021]

Kokoszka, P., and Young, G. (2016), “KPSS Test for Functional Time Series,”
Statistics, 50, 957–973. [1021]

Kraus, D., and Panaretos, V. M. (2012), “Dispersion Operators and Resis-
tant Second-order Functional Data Analysis,” Biometrika, 99, 813–
832. [1020,1021]

Lankas, F., Lavery, R., and Maddocks, J. H. (2006), “Kinking Occurs Dur-
ingMolecularDynamics Simulations of SmallDNAMinicircles,” Struc-
ture, 14, 1527–1534. [1022]

Lavery, R., Maddocks, J. H., Pasi, M., and Zakrzewska, K. (2014), “Ana-
lyzing Ion Distributions Around DNA,” Nucleic Acids Research,
42, 8138–8149. Available at http://nar.oxfordjournals.org/content/
42/12/8138.abstract. [1023]

Leach, A. R. (2001), Molecular Modelling: Principles and Applications (2nd
ed.), Harlow, Essex: Prentice Hall. [1022]

Mas, A. (2002), “Weak Convergence for the Covariance Operators of a
Hilbertian Linear Process,” Stochastic Processes and Their Applications,
99, 117–135. [1021]

Mas, A. (2007), “Testing for the Mean of Random Curves: A Penalization
Approach,” Statistical Inference for Stochastic Processes, 10, 147–163.
[1020]

Mas, A., and Menneteau, L. (2003), “Perturbation Approach Applied to the
Asymptotic Study of Random Operators,” in High Dimensional Proba-
bility III (Vol. 55), eds. J. Hoffmann-Jørgensen, J. A. Wellner, andM. B.
Marcus, Basel: Birkhäuser, pp. 127–133. [1020]

Mastroianni, A. J., Sivak, D. A., Geissler, P. L., and Alivisatos, A. P. (2009),
“Probing the Conformational Distributions of Subpersistence Length
DNA,” Biophysical Journal, 97, 1408–1417. [1021]

Mitchell, J. S., andHarris, S. A. (2013), “Thermodynamics ofWrithe inDNA
Minicircles From Molecular Dynamics Simulations,” Physical Review
Letters, 110, 148105. [1022]

Mitchell, J. S., Laughton, C. A., and Harris, S. A. (2011), “Atomistic Simula-
tionsReveal Bubbles, Kinks andWrinkles in SupercoiledDNA,”Nucleic
Acids Research, 39, 3928–3938. [1022]

Panaretos, V. M., Kraus, D., and Maddocks, J. H. (2010), “Second-Order
Comparison of Gaussian Random Functions and the Geometry of

http://nar.oxfordjournals.org/content/42/18/11304.abstract
http://nar.oxfordjournals.org/content/40/21/10668.abstract
http://www.jstor.org/stable/2669845
http://www.sciencedirect.com/science/article/pii/S0969212606000608
http://dx.doi.org/10.1016/j.jmva.2013.11.009
http://www.sciencedirect.com/science/article/pii/S0047259X13000195
http://www.sciencedirect.com/science/article/pii/S0304407613002327
http://nar.oxfordjournals.org/content/42/12/8138.abstract


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1035

DNAMinicircles,” Journal of the American Statistical Association: The-
ory & Methods, 105, 670–682. [1020,1021,1027,1028]

Panaretos, V. M., and Tavakoli, S. (2013a), “Fourier Analysis of Station-
ary Time Series in Function Space,” Annals of Statistics, 41, 568–603.
[1021,1026,1027]

——— (2013b), “Cramér–Karhunen–Loève Representation and Harmonic
Principal Component Analysis of Functional Time Series,” Stochastic
Process and their Applications, 123, 2779–2807. [1021,1026,1033]

Paparoditis, E., Sapatinas, T. (2014), “Bootstrap-Based K-Sample Testing
For Functional Data,”ArXiv e-prints, 1409–4317. [1020,1021]

Pasi, M., Maddocks, J. H., Beveridge, D., Bishop, T. C., Case, D. A.,
Cheatham, T., Dans, P. D., Jayaram, B., Lankas, F., Laughton, C.,
Mitchell, J., Osman, R., Orozco, M., Pérez, A., Petkevičit, D., Spack-
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