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A Molecular Dynamics Simulation Protocol

The details of the atomistic simulation protocol have been described previously (Lankas et al. 2006,

Gonzalez et al. 2013). In particular, initial DNA minicircle structures were created with Jumna

(Lavery et al. 1995) of sequences studied using cryo-electron microscopy (Amzallag et al. 2006)—

see also Table 1 in the main paper. The AMBER 10 suite of programs (Case et al. 2008), with the

parmbsc0 force field (Pérez et al. 2007), were used to run the simulations in explicit water modeled

with the SPC/E parameters, with periodic boundary conditions. The ion parameters developed by

Joung & Cheatham III (2008) were used to add 150 mM (Mole/litre) of KCl. The structures were

first equilibrated and then the production run was carried out with PMEMD. This treats long-range

electrostatics interactions with the particle mesh Ewald summation method (Essmann et al. 1995)

with a real space cutoff of 9 angstrom, cubic B-spline interpolation onto the charge grid with a

spacing of ∼ 1 angstrom. The Berendsen algorithm was used to maintain a constant temperature

of 300 Kelvin and a constant pressure of 1 atm (standard atmosphere). A 50 nanosecond trajectory

of each minicircle was generated using timesteps of 2 femtoseconds, with snapshots saved at 1

picosecond intervals. The DNA conformation at each snapshot was analysed with the program

∗Research Supported by an ERC Starting Grant Award
†Statistical Laboratory, University of Cambridge, Email: s.tavakoli@statslab.cam.ac.uk. ST was partially

supported by the EPSRC grant EP/K021672/2, and the research was partly carried out while ST was a Ph.D.
student at the Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne.
‡Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne, Email: victor.panaretos@epfl.ch

1



Curves+ to obtain the base-pair coordinates (Lavery et al. 2009).

B Technical Assumptions

Our technical assumptions concerning the smoothness of the curves τ 7→ {Xt(τ)} and the decay

of dependence between the elements of the sequence {Xt} follow those in Panaretos & Tavakoli

(2013b) and Tavakoli (2014), which extend to the functional setting the classical cumulant mixing

conditions of Brillinger (2001). The following conditions, given in Panaretos & Tavakoli (2013a)

and Tavakoli (2014), are used in the paper:

Conditions B.1. Xt is a stationary times series in L2 ([0, 1],R), satisfying:

(1) E‖X0‖k <∞ for all k ≥ 1

(2)
∑∞

t1,...,tk−1=−∞
∥∥cum

(
Xt1 , . . . , Xtk−1

, X0

)∥∥ <∞, for all k ≥ 2.

(3)
∑∞

t1,...,tk−1=−∞(1 + |tj |)
∥∥cum

(
Xt1 , . . . , Xtk−1

, X0

)∥∥ <∞, for k ∈ {2, 4} and j < k.

(4)
∑

t∈Z(1 + |t|)|||Rt|||1 <∞.

(5)
∑

t1,t2,t3∈Z |||Rt1,t2,t3 |||1 <∞.

The definitions of the different objects involved are as follows:

rt(τ, σ) = E [(Xt(τ)− µ(τ))(X0(σ)− µ(σ))]

is the lag-t autocovariance kernel, cum (Xt1 , . . . , Xtk) is a k-th order cumulant kernel (see Panaretos

& Tavakoli 2013b). The cumulant kernel of order 4 gives rise to a corresponding 4-th order cumulant

operator Rt1,t2,t3 : L2([0, 1]2,R)→ L2([0, 1]2,R), defined by

Rt1,t2,t3(u⊗ v) = cum (Xt1 ⊗Xt2〈u,Xt3〉〈v,X0〉) , u, v ∈ L2 ([0, 1],R).

|||·|||1 denotes the trace norm (also known as nuclear norm). For a detailed discussion of the in-

terpretation and role of these conditions, and a comparative discussion in relation with the finite-

dimensional versions thereof (as given in Brillinger 2001), the reader is referred to Panaretos &
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Tavakoli (2013b). Notice that moment-based conditions such as cumulant conditions are quite nat-

ural in our setting since we are considering the motion of a finite physical object, thus guaranteeing

finiteness of all moments.

C Proof of Theorem 3.1

The proof is in two parts. First we will show the result for a modified version of the test, where we

assume that the eigenfunctions and eigenvalues of the spectral density operators are known. Then

we will show that the sample versions of the eigenfunctions and eigenvalues are consistent, and the

conclusion will follow from Slutsky’s Theorem for metric spaces.

We recall that under the hypothesis Hω, we have F 1
ω = F 2

ω =: Fω, and the latter operator

has an eigendecomposition Fω =
∑

j≥1 µ
ω
j ϕ

ω
j ⊗ ϕωj . Denote by F

(T )
ω = (F

1,(T )
ω + F

2,(T )
ω )/2 the

pooled sample spectral density operator, with eigendecomposition F
(T )
ω =

∑
j≥1 µ̃

ω
j ϕ̃

ω
j ⊗ ϕ̃ωj . Write

ϕij = ϕi ⊗ ϕj and ϕ̃ij = ϕ̃i ⊗ ϕ̃j . Fix ω ∈ [0, π], and omit any superscripts of the form ·ω in order

simplify notation (this will not affect the validity of the proof, since ω will be fixed throughout).

Define

∆̌
(T )
K (ω) =

K∑
i,j=1

∣∣∣〈D(T )
ω ϕj , ϕi

〉∣∣∣2(
1 + 1{0,π}(ω)

)
4πκ2µiµj

, (C.1)

where D
(T )
ω =

√
TBT

(
F

1,(T )
ω −F

2,(T )
ω

)
. By Panaretos & Tavakoli (2013b, Theorem 3.7), we know

that D
(T )
ω converges in distribution to a random element F̆ω, whose Karhunen–Loève expansion is

given by F̆ω =
∑∞

i,j=1 ηijϕij , see Lemmas 4.4 and 4.5 in Panaretos & Tavakoli (2013a) for details.

In particular, {ηij : 1 ≤ i ≤ j} are all independent Gaussian random variables with mean zero.

Hence, by the continuous mapping Theorem,

∆̌
(T )
K (ω)

d−→
K∑

i,j=1

|ηij |2(
1 + 1{0,π}(ω)

)
4πκ2µiµj

=: ∆K(ω) (C.2)

We now need to distinguish two cases: if ω ∈ {0, π} , then ηji = ηij for i < j, all {ηij : j ≥ i ≥ 1}

are real independent Gaussian random variables with mean zero, and var (ηii) = 8πκ2µ2
i , var (ηij) =

4πκ2µiµj , i < j.A direct calculation thus yields ∆K(ω) ∼ χ2
K(K+1)/2, since

(
|ηij |2 + |ηji|2

)
/(8πκ2µiµj) =

|ηij |2/(4πκ2µiµj) ∼ χ2
1, i < j and |ηii|2/(8πκ2µ2

i ) ∼ χ2
1. If ω 6∈ {0, π} , the random variables ηij
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are real Gaussian variables for i = j and circular complex Gaussian for i < j (see e.g. Picinbono

(1996), Schreier & Scharf (2010) for the definition of circular complex Gaussian random variables),

with ηji = ηij for i < j and var (ηij) = 4πκ2µiµj for all i ≤ j. Hence, ∆K(ω) ∼ χ2
K2 , since

|ηii|2/(4πκ2µ2
i ) ∼ χ2

1 and
(
|ηij |2 + |ηji|2

)
/(4πκ2µiµj) = 2|ηij |2/(4πκ2µiµj) ∼ χ2

2, for i < j.

Turning to the second part of the proof, Lemma 4.2 of Bosq (2000), implies that E|µ̃i − µi|2 ≤

E|||F (T )
ω −Fω|||

2

2 → 0, T → ∞. Hence, for all i = 1, 2, . . . ,K, µ̃i converges in L2 to µi, and µ̃i is

therefore a consistent estimator of µi. We now turn to the eigenfunctions ϕi. We point out that

these eigenfunctions are not uniquely defined, however the eigenprojectors Πi = ϕi ⊗ ϕi are well

defined. Using Panaretos & Tavakoli (2013a, Propositions 5.1 and 5.2), we get |〈D(T )
ω ϕ̃j , ϕ̃i〉|2 =

〈D(T )
ω
⊗̃

D
(T )
ω , Π̃i

⊗
Π̃j〉S2 , where A

⊗̃
B denotes the Kronecker product of two operators A,B

acting on a Hilbert space H, i.e. (A
⊗̃

B)C = ACB† for an operator C acting on H, B† is

the adjoint operator of B, and 〈·, ·〉S2 denotes the Hilbert-Schmidt scalar product, i.e. 〈A,B〉S2 =∑
j≥1 〈Aej , Bej〉 for operators A,B acting on L2 ([0, 1],C), and (ej)j≥1 is any complete orthonormal

sequence in L2 ([0, 1],C). Since Π̃i is a consistent estimator of Πi, i = 1, . . . ,K (Panaretos &

Tavakoli 2013a, Theorem 4.3), and the Kronecker and tensor products are continuous, the continuous

mapping Theorem implies Π̃i
⊗

Π̃j
p−→ Πi

⊗
Πj , and D

(T )
ω
⊗̃

D
(T )
ω

d−→ F̆ω
⊗̃

F̆ω. Therefore, by

Slutsky’s Theorem,

∆̃
(T )
K

d−→
K∑

i,j=1

〈
F̆ω

⊗̃
F̆ω,Πi

⊗
Πj

〉
S2(

1 + 1{0,π}(ω)
)

4πκ2µiµj
= ∆K(ω).

To complete the proof, it suffices to note that the independence of the ∆Kj (ωj)s follows directly

from the independence of the F̆ωj s.

D Numerical Simulations

D.1 Level and Power

In order to assess the finite sample performances of our testing procedure, we conducted some

numerical simulations. The situation where the truncation level K is chosen using either AIC or

AIC∗ is of particular interest, since our asymptotic framework requires having K fixed (determin-

istic) and T →∞, whereas K chosen with AIC/AIC∗ is random. For our simulations, we generate

a stationary functional times series admitting the linear representation X
[α]
t =

∑2
s=0 αsAsεt−s,
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where αs ∈ R are scaling parameters (described below), As are bounded operators, and the εt are

i.i.d. random functions (the innovations), represented using a truncated Karhunen–Loève expansion:

εt(τ) =
∑20

k=1 ξk,t
√
λkek(τ), and ek(τ) =

√
2 sin[(k − 1/2)πτ ] is orthonormal system in L2([0, 1],R),

see e.g. Adler (1990). The ξk,t are centered i.i.d. random variables with unit variance, whose distri-

bution induces the distribution of the random functions εt. The λks are numbers that describe the

roughness of random curves εt. If λk → 0 very fast, then the curves are smooth. Conversely, if λk

decays slowly, the curves are rough. We will consider the three following scenarios for ξk,t and λk:

Wiener: the ξk,t are independent standard Gaussian random variables, and

λk = 1/[(k − 1/2)2π2].

The random curves εt therefore correspond to an approximation of the Wiener pro-

cess, where the approximation is due to the truncation of the Karhunen–Loève ex-

pansion of εt.

White-noise: the ξ′k,t are independent standard Gaussian random variables, and λk = 1 for all

k ≥ 1. This process corresponds to a rougher version of the Wiener scenario, and is

a projection of a true Gaussian white noise process.

Student5: The ξk,t are i.i.d. distributed random variables, following Student’s t distribution

with ν = 5 degrees of freedom (rescaled to have unit variance), and λk = 1 for

all k ≥ 1. This process is similar to the White-noise process, except it is not

Gaussian, and only its first 4 moments are finite. In particular, it does not satisfy

Conditions B.1. It is presented here as an extreme scenario.

We have constructed the operators As so that their image be contained within a 20-dimensional

subspace of L2 ([0, 1],R), spanned by an orthonormal basis ψ1, . . . , ψ20. Representing εt in the

(ek)
20
k=1 basis, and As in the (ψm⊗ ek)20

m,k=1 basis, we obtain a matrix representation of the process

X
[α]
t as X

[α]
t =

∑2
s=0 αsAsεt−s, where X

[α]
t is a 20× 1 matrix, each As is a 20× 20 matrix, and εt

is a 20× 1 matrix.

The matrices As are constructed by drawing, for each of their coordinates, i.i.d. Gaussian

variables with mean 1 and standard deviation 0.5. In practice, their construction is done by fixing
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the random seed to a pre-chosen value and using the same generation scheme for each simulation

run. The parameters α = (α0, α1, α2) are used to make the spectral density operators of X
[α]
t less

constant. We chose

α = α(ma.diff) = (−1.4, 2.3,−2 + ma.diff) (D.1)

where ma.diff is a parameter that is allowed to change. The trace of the spectral density operator

for the Wiener scenario is shown is in Figure S1 for ma.diff = 0, 0.1, . . . , 0.5. Visual appreciation

of the roughness of each process can be obtained by plots of the percentage of explained variation at

each frequency ω ∈ [0, π], that is, the proportion of the total variation of the infinitesimal increment

process dZω contained in its first k eigenspaces, i.e.

∑k
j=1 µj(ω)∑20
j=1 µj(ω)

, k = 1, 2, . . . , 20. (D.2)

The percentages of explained variation per frequency are shown in Figure S3 for the Wiener scenario,

and in Figure S4 for the White-noise and Student5 scenarios. Notice that k = 1 already explains

at least 80% of the variation at each frequency for the Wiener scenario, whereas we need to take

k = 8 in the White-noise scenario to explain 80% of the variation at frequencies near 0.9.

For each ma.diff ∈ {0, 0.1, . . . , 0.5}, and each T ∈
{

26, 27, . . . , 210
}

, we simulated for b =

1, . . . , B stretches of length T of the time series X
[α(0)]
t and X

[α(ma.diff)]
t . Denoting these observed

times series by Xb,1 and Xb,2, we computed their spectral density operators using the bandwidth

BT = T−1/5, (e.g. Grenander & Rosenblatt (1957, Par. 4.7), Brillinger (2001, Par. 7.4)) and took

the weight functionW (x) to be the Epanechnikov kernel (e.g. Wand & Jones 1995), W (x) = 3
4(1−x2)

if |x| < 1, and zero otherwise. We then compute and store the p-values

pbj,k = P
(

∆̃
(T )
k (ωj) < χ2

ν(ωj)
)
, j = 1, . . . , J ; k = 1, . . . , 10,

where ∆̃
(T )
k (·) is defined in Theorem 3.1 of the paper, ν(ωj) = K(ωj)[K(ωj) − 1]/2 if ωj ∈ {0, π},

and ν(ωj) = K(ωj)
2 otherwise, and Γ = {ω1, . . . , ωJ} ⊂ [0, π] is a grid of frequencies. Following

the discussion of Section 3.3 of the paper, we choose ω1 = 0; ω2 = BT ; ωJ−1 = π − BT ; ωJ = π;

and ω3, . . . , ωJ−2 equispaced with spacing ∆ω = 2BT
10 . The reason behind this choice is that the

spectral density operators are computed by weighted averaging of the periodogram operator on
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

5
10

20
50

the nuclear norms of the Spectrum, 'wiener' Scenario

ω

ma.diff= 0
ma.diff= 0.1
ma.diff= 0.2
ma.diff= 0.3
ma.diff= 0.4
ma.diff= 0.5

Figure S1: The trace of the spectral density operators of X
[α(ma.diff)]
t for different values of ma.diff.

7



frequencies belonging to an interval of length 2BT . Therefore the spectral density operators will

be very variable (approximately independent) for two frequencies separated by 2BT , but not very

variable if the frequencies are at distance less than 2BT . Our choice of ∆ω corresponds to a coverage

of each interval of length 2BT with at least 9 = 10 − 1 points of the grid Γ, except of course near

the extremities {0, π}.

For each depth level k, and each b, we adjust the p-values (pbj,k)j=1,...,J using the Benjamini-

Hochberg procedure. We then estimate the probability of rejecting the global null hypothesis

HG :=
⋂
ω∈ΓHω at level α, within the depth k, by

B−1
B∑
b=1

1

(
min

j=1,...,J
pbj,k ≤ α

)
. (D.3)

The results of this procedure—with α = 5%, and k ∈ {1, . . . , 5}—are shown in Figures S5, S6 and

S7 for the Wiener, White-noise and Student5 scenarios, respectively. We notice that the level is

respected in each scenario, and for each sample size T = 128, . . . , 1024. For the Wiener scenario,

choosing k = 1 does not yield a powerful test, even with a sample size of T = 1024. However,

taking k = 2 seems to already be reasonably powerful, even at sample size T = 256, at which it is

almost as competitive as k = 3, 4, 5. For larger sample sizes, choosing k larger yields big differences

in power: for instance in the case T = 1024, at ma.diff = 0.2, the power increases by roughly

0.2 if we increase k by one. The White-noise and Student5 scenarios are more surprising: quite

often, the case k = 1 yields the most (or near to the most) powerful test amongst k = 1, 2, . . . , 5.

At sample size T = 1024, and ma.diff = 0.3, the difference in power between k = 1 and k = 5 is

about 40%, in favour of k = 1.

We also show in Table S1 the true level of our testing procedure, and in Figure S8 the estimated

probabilities of rejection for the global null, when the truncation level k is chosen either by AIC or

by AIC∗. That is, if we denote by K(ω), respectively K∗(ω), the truncation level K that minimizes

the AIC, respectively the AIC∗ criteria, we plot the values of

B−1
B∑
b=1

1

(
min

j=1,...,J
pbj,K(ωj) ≤ α

)
(D.4)
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and

B−1
B∑
b=1

1

(
min

j=1,...,J
pbj,K∗(ωj) ≤ α

)
(D.5)

for each ma.diff ∈ {0, 0.1, . . . , 0.5} and T = 64, 128, . . . , 1024, for α = 5%. We see that our

testing procedure respects the level of the test in all the settings considered, except for T = 64

when K(ω) is chosen by AIC (this is due K(ω) taking too large values in this setting). Moreover,

our procedure is generally conservative, due to the multiple testing approach taken (Benjamini &

Hochberg 1995). Concerning the power of our test, we see that in the Wiener scenario, criterion

AIC is much better than AIC∗. However, in the White-noise or Student5 scenarios, the opposite

holds. Moreover, for the low sample sizes T = 64, AIC seems to fail. Except for that, in every

scenario and every other sample size, both criteria seem to respect the level α = 5%. The power

using either AIC criterion is not necessarily larger than that obtained using a fixed pre-chosen value

for the truncation level k (that is, without correcting for multiplicity in the choice of k). However,

it is not clear how to choose k a priori. Therefore, for most power in rejecting the global hypothesis

HG, we recommend using the AIC criterion in settings that are quite smooth (when the eigenvalues

of the spectral density operators decay quickly), and the AIC∗ criterion in rougher settings (when

the eigenvalues of the spectral density operators decay slowly).

D.2 Power as gridsize varies

Our testing method assumes the choice of a discretization of the interval [0, π] as a given, but

in practice this choice is up to the analyst and may affect the power of the test, as described in

Section 3.3 of the main paper. In order to better understand the effect of the discretization at

a finite sample level—particularly in the absence of prior knowledge on differences between the

spectral density operators—we investigated by means of numerical simulations the level/power of

our procedure under various discretizations of the interval [0, π]. We focused on discretizations

Γd ⊂ [BT , π −BT ] , where d ∈ [1, 100] denotes the density of the grid: d = 1 corresponds to a grid

with frequencies separated by at least 2BT (a sparse grid), and d = 100 corresponds to the densest

grid, the grid of Fourier frequencies within [BT , π −BT ]:

Γ∗ = Γ100 = {πs/T : s = 0, 1, . . . , T} ∩ [BT , π −BT ].

9



Figure S2 shows the discretization grid Γd for various values of d. We show in Figure S9 how the

FDR-adjusted p-values change for different values of d, given two functional time series of length

T = 1024 that have different spectral density operators. Notice that there seems to be a convergence

of the adjusted p-values as d → 100. However the convergence is not perfect. This is due in part

to the randomness of K(ω), but also to the continuity (in ω) of the test statistic. Looking at the

level/power for different values of d, given in Figure S10, it seems that, as d → 100, the quantity

of information contained in the raw p-values increases less and less, and the multiplicity correction

leads to a slight loss of power.

d

frequency ω

1
20

50
10

0

0.00 0.35 0.70 1.05 1.40 1.75 2.09 2.44 2.79 3.14

Figure S2: The discretizations Γd for different values of d, for T = 512 and BT = T−1/5 = 0.287.

E Approximate P-values for Spatially Localizing Differences within

Frequencies

Theorem 3.7 of Panaretos & Tavakoli (2013b) implies that, under
⋂80
i,j=1Hω(i, j),

√
TBT (f

1,(T )
ω −

f
2,(T )
ω ) will be asymptotically distributed as a random matrix f̆ω, which follows a complex Gaussian
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T 64 128 256 512 1024

Wiener 0.71 0.00 0.03 0.03 0.02
AIC White-noise 0.66 0.00 0.02 0.02 0.02

Student5 0.66 0.00 0.03 0.03 0.04

Wiener 0.03 0.00 0.02 0.02 0.03
AIC∗ White-noise 0.01 0.00 0.03 0.03 0.03

Student5 0.01 0.00 0.03 0.04 0.04

Table S1: Empirical level of the simulation study. The standard deviation, based on a Gaussian approxima-
tion, is at most sd = 0.015.

distribution (which is not necessarily circular; see Picinbono (1996), Schreier & Scharf (2010) for a

definition) with mean zero, and second-order structure given by

E
[
f̆ω1(i, j)f̆ω2(k, l)

]
= 4πκ2 · [η(ω1 + ω2)fω1(i, k)f−ω1(j, l) + η(ω1 − ω2)fω1(i, l)f−ω1(j, k)] , (E.1)

where κ2 =
∫
RW (x)2dx and η(ω) = 1 if ω ∈ {0,±π,±2π}, and zero otherwise. We shall use this

asymptotic distribution to obtain, for each (i, j), an approximate p-value for the null hypothesis

Hω(i, j), by renormalizing properly the difference D
(T )
ω =

√
TBT (f

1,(T )
ω − f

2,(T )
ω ). In the following,

we shall use the notation f̃ω = (f
1,(T )
ω + f

2,(T )
ω )/2. The test statistic we use is

L(T )(ω, i, j) =



∣∣∣D(T )
ω (i, j)

∣∣∣2 /{4πκ2
[
|f̃ω(i, j)|2 + f̃ω(i, i)f̃ω(j, j)

]}
if ω ∈ {0, π}∣∣∣D(T )

ω (i, i)
∣∣∣2 /{4πκ2|f̃ω(i, i)|2

}
if ω ∈ (0, π), i = j,{

|D(T )
ω (i, j)|2/P −<

[
(D

(T )
ω (i, j))2R

]
/P
}
/(2πκ2) if ω ∈ (0, π), i 6= j,

where <(·) denotes the real part of a complex number,

P = P (ω, i, j) = f̃ω(i, i)f̃ω(j, j)− |f̃ω(i, j)|4/[f̃ω(i, i)f̃ω(j, j)]

and R = R(ω, i, j) = [ f̃ω(i, j) ]2/[f̃ω(i, i)f̃ω(j, j)].

The following proposition gives the asymptotic distribution of L(T ), and its proof follows easily

from results in Picinbono (1996), Panaretos & Tavakoli (2013b) and Tavakoli (2014):

Proposition E.1. Assume Conditions B.1 (1)-(5) hold, and BT → 0 & TBT → ∞ as T → ∞.

Under Hω(i, j), if fω(i, i)fω(j, j) 6= 0, the asymptotic distribution of the test statistic L(T )(ω, i, j) is
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χ2
1 if ω ∈ {0, π} or i = j, and χ2

2 otherwise (i.e. if i 6= j and ω ∈ (0, π)).

The reason the form of the test statistic L(T )(ω, i, j) is quite complicated in the case i 6= j&ω ∈

(0, π) is that in this case, D
(T )
ω (i, j) follows a complex distribution that is not circular, and its studen-

tization cannot be accomplished via the “usual” formula for Gaussian random vectors (see Picinbono

(1996), Schreier & Scharf (2010)). Using Proposition E.1, we can compute the approximate p-values

p(ω, i, j), ω ∈ [0, π], i ≤ j. Notice that within a frequency, the p-values {p(ω, i, j) : i ≤ j} are corre-

lated, with a complicated correlation structure. For instance, for ω ∈ {0, π} or i = j & k = l, the

asymptotic covariance is given by

lim
T→∞

cov
(
L(T )(ω, i, j), L(T )(ω, k, l)

)
= 2 corr

(
f̆ω(i, j), f̆ω(k, l)

)2
, (E.2)

which is in general non-zero, see (E.1).
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Figure S3: The percentage of variation per frequency (computed using (D.2)), for the Wiener scenario. The
bottom curve corresponds to the percentage of variation explained by k = 1, the one just above corresponds
to k = 2, as so on. Notice the scale of the y-axis.
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Figure S4: The percentage of variation per frequency, for the White-noise and Student5 scenarios. These
are computed using (D.2). The bottom curve corresponds to the percentage of variation explained by k = 1,
the one just above corresponds to k = 2, as so on. Notice the scale of the y-axis.
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Figure S5: The estimated probability of rejection of the global null hypothesis at level 5% in the Wiener

scenario for each depth k ∈ {1, . . . , 5}, see (D.3). The x-axis represents the coefficient ma.diff, and each plot
corresponds to a different sample size, ranging from T = 128 (top) to T = 1024 (bottom). The horizontal
dotted line corresponds to the 5% level, and the standard deviation, based on a normal approximation, is at
most 0.016.
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Figure S6: The estimated probability of rejection of the global null hypothesis at level 5% in the White-noise
scenario for each depth k ∈ {1, . . . , 5}, see (D.3). The x-axis represents the coefficient ma.diff, and each plot
corresponds to a different sample size, ranging from T = 128 (top) to T = 1024 (bottom). The horizontal
dotted line corresponds to the 5% level, and the standard deviation, based on a normal approximation, is at
most 0.016.
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Figure S7: The estimated probability of rejection of the global null hypothesis at level 5% in the Student5

scenario for each depth k ∈ {1, . . . , 5}, see (D.3). The x-axis represents the coefficient ma.diff, and each plot
corresponds to a different sample size, ranging from T = 128 (top) to T = 1024 (bottom). The horizontal
dotted line corresponds to the 5% level, and the standard deviation, based on a normal approximation, is at
most 0.016.
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Figure S8: The estimated probability of rejecting the global null hypothesis—see (D.4) and (D.5)—when the
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multiplicity by FDR, and the standard deviation, based on a normal approximation, is at most sd = 0.016.
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Figure S11: The effect of the constant δ = 10−3 in the linearization of the curvature (see (2.2) in the main
paper). The dashed curve is log(ct(·)), and the gray solid curve is dt(·) = log(δ + ct(·)). Notice that the dt
smooths the downward peaks that are very deep, while changing only a little other points.
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Figure S12: Illustration of the smoothing process. The dashed curve with the solid grey dots represents the
scatterplot (2.3) (in the main paper), and the solid black curve represents its smoothed version obtained by
projection on a basis of 80 periodic cubic B-splines.
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Figure S13: Plot of the sample spectral density kernels for 12 equispaced frequencies on [0, π]. For each
ω, the modulus of the sample spectral density kernel of the minicircles are plotted: the upper-left part of
each square represents the modulus of the sample spectral density kernel of CAP, and the lower-right part
represents the corresponding quantity for TATA. Lack of symmetry between the upper-left and lower-right
is a sign of differences in the sample spectral density operator of CAP and TATA.
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(a) Histogram of raw p-values for CAP.
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(b) Histogram of raw p-values for TATA.
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(c) Adjusted p-values (BH procedure) for CAP.
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(d) Adjusted p-values (BH procedure) for TATA.

Figure S14: Histogram of raw p-values for testing the equality of the spectral density operator of CAP (a)
and TATA (b) between the beginning of the time stretch (t = 1, . . . , 1000) and the end of the time stretch
(t = 9001, . . . , 10000). The p-values adjusted by the Benjamini-Hochberg Procedure for CAP (c) and TATA
(d). The truncation level K(ω) was chosen automatically at each frequency ω with AIC∗. The dashed line
represents the 5% level threshold.
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