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Preface

I have always been passionate about mathematics, and since more recently statistics. During these

past four years, and specially during these last six weeks during which I wrote this thesis, I have

learned that abstraction can help you a lot when confronted with a roadblock, but that it is always

possible to take a further step in abstraction. In the past few weeks, I have spent a significant

amount of time and effort trying to generalize some of the earlier results I had obtained. I got lost a

couple of times into the spiral of abstraction, and sometimes my efforts were unfruitful. However, I

was lucky enough to find answers to my questions at times. As a result, some statements are more

general than versions published in our papers (Panaretos & Tavakoli 2013a,b), but might be slightly

obscured by technical conditions; when this is the case, I have made an effort to add a remark or an

explanation, which I hope will be helpful to the reader. A list of notation and an index have been

added for helping the reading with the plethora of symbols (and different norms).

Lausanne, August 16, 2014 S.T.





Abstract

This work is about time series of functional data (functional time series), and consists of three main

parts. In the first part (Chapter 2), we develop a doubly spectral decomposition for functional time

series that generalizes the Karhunen–Loève expansion. In the second part (Chapter 3), we develop

the theory of estimation for the spectral density operators, which are the main tool involved in

the doubly spectral decomposition. The third part (Chapter 4) is concerned with the problem of

understanding and comparing the dynamics of DNA. It proposes a methodology for comparing the

dynamics of DNA minicircles that are vibrating in solution, using tools developed in this thesis.

In the first part, we develop a doubly spectral representation of a stationary functional time series

that generalizes the Karhunen–Loève expansion to the functional time series setting. The represen-

tation decomposes the time series into an integral of uncorrelated frequency components (Cramér

representation), each of which is in turn expanded in a Karhunen-Loève series, thus yielding a

Cramér–Karhunen–Loève decomposition of the series. The construction is based on the spectral

density operators—whose Fourier coefficients are the lag-t autocovariance operators—which char-

acterise the second-order dynamics of the process. The spectral density operators are the functional

analogues of the spectral density matrices, whose eigenvalues and eigenfunctions at different fre-

quencies provide the building blocks of the representation. By truncating the representation at

a finite level, we obtain a harmonic principal component analysis of the time series, an optimal

finite dimensional reduction of the time series that captures both the temporal dynamics of the

process, and the within-curve dynamics, and dominates functional PCA. The proofs rely on the

construction of a stochastic integral of operator-valued functions, whose construction is similar to

that of the Itō integral.

In practice, the spectral density operators are unknown. In the second part, we therefore develop

the basic theory of a frequency domain framework for drawing statistical inferences on the spectral

density operators of a stationary functional time series. Our main tool is the functional Discrete

Fourier Transform (fDFT). We derive an asymptotic Gaussian representation of the fDFT, thus allow-

ing the transformation of the original collection of dependent random functions into a collection

of approximately independent complex-valued Gaussian random functions. Our results are then

employed in order to construct estimators of the spectral density operators based on smoothed

versions of the periodogram kernel, the functional generalisation of the periodogram matrix. The

consistency and asymptotic law of these estimators are studied in detail. As immediate conse-

quences, we obtain central limit theorems for the mean and the long-run covariance operator of a
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stationary functional time series. Our results do not depend on structural modeling assumptions,

but only functional versions of classical cumulant mixing conditions. The effect of discrete noisy

observations on the consistency of the estimators is studied in a framework general enough to

apply to a wide range of smoothing techniques for converting discrete noisy observations into

functional data. We also perform a simulation study to assess the finite sample performance of our

estimators, and give a discussion of the technical assumptions of our results, and at what cost our

weak dependence assumptions could be changed or weakened, and provide examples of processes

satisfying the technical assumptions of our asymptotic results.

As an application, we consider in the third part the problem of comparing the dynamics of the

trajectories of two DNA minicircles that are vibrating in solution, which are obtained via Molecular

Dynamics simulations. The approach we take is to view and compare the dynamics through their

spectral density operators, which contain the entire second-order structure of the trajectories. As a

first step, we compare the spectral density operators of the two DNA minicircles using a new test

we develop, which allows us to compare the spectral density operators at a fixed frequencies. Using

multiple testing procedures, we are able to localize in frequencies the differences in spectral density

operators of the two DNA minicircles, while controlling a type-I error, and conduct numerical

simulations to assess the performance of our method. We further investigate the differences

between the two minicircles by comparing their spectral density operators within frequencies. This

allows us to localize their differences both in frequencies and on the minicircles, while controlling

the averaged false discovery rate over the selected frequencies. Our methodology is general enough

to be applied to the comparison of the dynamics of any pair of stationary functional time series.

Keywords: functional data, Cramér representation, Karhunen–Loève expansion, discrete Fourier

transform, periodogram, spectrum, spectral density, spectral density operator, DNA minicircle,

mixing, weak dependence, cumulants, multiple testing, FDR.



Résumé

Ce travail porte sur des séries temporelles de données fonctionnelles (séries temporelle fonction-

nelle), et est consitué de trois parties principales. Dans la première partie (Chapitre 2), nous dévelop-

pons une double décomposition spectrale pour les séries temporelles fonctionnelle qui généralise

l’expansion Karhunen–Loève. Dans la deuxième partie (Chapitre 3), nous développons la théorie

de l’estimation des opérateurs de densité spectrale, qui sont les outils principaux impliqués dans

la double décomposition spectrale. La troisième partie (chapitre 4) s’adresse a la compréhension

et a la comparaison de la dynamique de l’ADN. Nous proposons une méthode pour comparer la

dynamique de minicercles d’ADN qui vibrent dans un fluide, en utilisant les outils développés dans

cette thèse.

Dans la première partie, nous développons une représentation doublement spectrale d’une sé-

rie temporelle stationnaire fonctionnelle qui généralise la décomposition de Karhunen–Loève

au contexte des séries temporelles fonctionnelles. La représentation consiste en une décomposi-

tion de la série temporelle en une intégrale de composantes de différentes fréquences, qui sont

non-corrélées (représentation de Cramér), dont chacun est à son tour décomposée a l’aide de

la décomposition de Karhunen–Loève, donnant ainsi la décomposition de CKL. La construction

s’appuie sur les opérat de densité spectrale — dont les coefficients de Fourier sont les opérateurs

d’autocovariance de la série temporelle — qui caractérise la dynamique de second ordre de la série.

Ce sont les valeurs propres et les vecteurs propres des opérateurs de densité spectrale qui sont les

éléments principaux de la construction de notre représentation. En tronquant la représentation à

un niveau fini, on obtient une analyse harmonique en composantes principales de la série tempo-

relle, une approximation optimale de dimension finie de la série temporelle qui reflète à la fois la

dynamique temporelle du processus, ainsi que la dynamique interne de la fonction, et qui domine

l’analyse en composantes principales. Les preuves reposent sur la construction d’une intégrale

stochastique de fonctions a valeurs dans des espaces d’opérateurs dont la construction est similaire

à celle de l’intégrale d’Itō.

En pratique, les opérateurs de densité spectrale sont inconnus. Nous développons donc dans la

deuxième partie de cette thèse la théorie de base d’une analyse de séries temporelles fonctionnelles

stationnaires par une approche spectrale. Notre outil principal est la transformée de Fourier dis-

crète, (fDFT). Nous obtenons une représentation gaussienne asymptotique de la fDFT, permettant

ainsi la transformation de la collection originale de fonctions aléatoires dépendantes en une col-

lection de fonctions aléatoires complexes approximativement indépendantes et gaussiennes. Nos
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résultats sont ensuite utilisés pour construire des estimateurs des opérateurs de densité spectrale

basés sur des versions lissées du périodogramme, le généralisation fonctionnelle de la matrice de

périodogramme. La consistance et la loi asymptotique de ces estimateurs sont étudiés en détail.

Comme corollaires immédiats, nous obtenons des théorèmes centraux limites pour la moyenne et

l’opérateur de covariance à long terme d’une série de temporelle fonctionnelle stationnaire. Nos

résultats ne dépendent pas de la structure de la séries temporelle, mais seulement de versions fonc-

tionnelles des conditions de sommabilité des cumulants. L’effet de observations bruitées discrets

sur la consistance des estimateurs est étudié dans un cadre général assez pour s’appliquer à un large

éventail de techniques de lissage pour convertir des observations bruitées discrètes en données

fonctionnelles. Nous effectuons également une étude de simulation pour évaluer la performance de

nos estimateurs avec un échantillon fini, et donnons une discussion sur les hypothèses techniques

de nos résultats, et comment elles pourraient être modifiées ou affaiblies. Nous fournissons des

exemples de processus satisfaisant les hypothèses techniques de nos résultats asymptotiques.

Comme application, nous considérons dans la troisième partie le problème de la comparaison

de la dynamique des trajectoires des deux minicercles d’ADN qui vibrent dans un liquide, et qui

sont obtenus par simulations de dynamique moléculaire. Notre approche consiste a comparer la

dynamique de ces minicercles d’ADN a travers leur spectre, qui encode toute la structure de second

order de leur trajectoire. Dans un premier temps, nous comparons les spectres des deux minicercles

d’ADN l’aide d’un nouveau test nous avons développé, qui nous permet de comparer les opérateurs

de densité spectrale à des fréquences fixes. En utilisant des procédures de tests multiples, nous

sommes en mesure de localiser dans les fréquences les différences spectres des deux minicercles

d’ADN, tout en contrôlant une erreur de type I, et procédons à des simulations numériques pour

évaluer la performance de notre méthode. Nous étudions de plus les différences entre les deux

minicercles en comparant leurs opérateurs de densité spectrale a l’intérieur des fréquences. Cela

nous permet de localiser leurs différences à la fois dans les fréquences et sur les minicercles,

tout en contrôlant le taux moyen de fausses découvertes sur les fréquences sélectionnées. Notre

méthodologie est assez générale pour être appliqué à la comparaison de la dynamique de n’importe

quelle paire de séries temporelles fonctionnelle stationnaire.

Mots clefs : données fonctionnelles, représentation de Cramér, expansion de Karhunen–Loève,

transformée de Fourier discrete, periodogramme, spectre, opérateur de densité spectrale, mini-

cercles d’ADN, coefficients de mixage, dépendance faible, cumulants, tests multiplies, FDR.
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Introduction and Overview

David Brillinger’s aphorism “you want to be thinking of data as anything that can be mathematically

expressed” is nowadays extremely pertinent (Brillinger 2012). Partly due to technological advances

over the last decades, an increasing number of modern datasets can be thought of as being sampled

recordings of complex mathematical structures, such as smooth curves or surfaces. Such data

are called functional data, and examples of datasets include growth curves, temperature curves,

electricity consumption curves, gait cycle data, density functions, speech recordings, brain images,

or DNA minicircles vibrating in solution (see Chapter 4 of this thesis, Ramsay & Silverman (2005),

Ferraty (2011)).

From a statistical point of view, many of these datasets can be modeled as independent and iden-

tically distributed (i.i.d.) realizations of an underlying random object, such as a random curve.

However, many other types of data have an intrinsic dependency structure that distinguishes them

from the i.i.d. setting, and prohibits the use of “i.i.d. technology” without further justification. A

particular type of dependency is given by functional time series, in which it is assumed that the

collected curves x1, . . . , xT correspond to a realization of a sequence of random curves X1, . . . , XT ,

where X t represents the state of some random curve X at time t . Intuitively speaking, the depen-

dency structure is given by the “memory” that the process (X t )t∈Z keeps of its preceding states, and

its influence on the current configuration of the process.

The object of this thesis is the study of time series of functional data, or functional time series,

through a frequency approach. This involves the study of the series (X t )t∈Z not in the (natural) time

domain indexed by the time t ∈Z, but in a transformed space indexed by frequencies ω ∈ [−π,π].

The tools used for this approach come from Fourier analysis (Fourier 1822, Edwards 1967), which

explains the first part of the title of this thesis.

The advantages of taking a frequency domain approach to study functional time series are manifold

(and will be described below), but perhaps the most appealing result is that the functional discrete

Fourier transform transforms (bijectively) a dependent set of random curves (X t )T
t=1 into a set of

complex valued random curves that are asymptotically independent and Gaussian—in other words

it transforms dependent data into asymptotically independent Gaussian data!

Here is a short description of the chapters of the thesis, followed by a detailed overview. The thesis

start with a compact overview of functional data analysis (Chapter 1), followed by the three chapters

that are the main contributions of this thesis: Chapter 2, where we develop a doubly spectral de-

composition for functional time series that generalizes the Karhunen–Loève expansion. The theory

of estimation for the main tool involved this doubly spectral decomposition (the spectral density
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operators), will be developed in Chapter 3. In Chapter 4, we study the problem of understanding the

mechanics of DNA, and propose a methodology for comparing the dynamics of DNA minicircles

that are vibrating in solution, using tools developed in Chapters 2 and 3. Chapters A, B and C are

technical appendices presenting some of the background theory used in the thesis.

Detailed Overview of the Thesis

Chapter 1 of the thesis gives an overview of functional data analysis (FDA), and presents its major

tool, the Karhunen–Loève expansion (Propositions 1.2.2 and 1.2.3). Then the basic theory for

inference of the first and second-order structure of functional data in the i.i.d. case is presented

in Section 1.3, where the strong law of large numbers and the central limit theorem for random

elements of Hilbert spaces are presented (Theorem 1.3.1), as well as asymptotic results concerning

the eigenstructure of the empirical covariance operator (Section 1.3.2). We then turn to the func-

tional time series case (Section 1.4), first by presenting the case of functional autoregressive models

and functional linear process models, under which asymptotic results for the sample mean and

sample autocovariance operators are given in Theorem 1.4.2. We then move on beyond the linearity

assumption and consider more general functional time series structure whose weak dependence

is quantified by α-mixing or Lp -m-approximability (Section 1.4.2). We conclude the chapter by

noting that the Karhunen–Loève expansion, though being a sensible and optimal tool in the i.i.d.

setup, is not the best approach in presence of dependencies (Section 1.5).

Chapter 2 is devoted to the development of a decomposition for functional time series (FTS) that

generalizes the properties that the Karhunen–Loève has in the i.i.d. setup. This is done by first de-

veloping a functional Cramér representation (Theorem 2.4.3), which tells us that each second-order

functional time series can be approximately decomposed into a sum of uncorrelated random func-

tions that are vibrating at distinct frequencies. Further to this first spectral decomposition, we can

perform a second decomposition by expanding each of these uncorrelated random functions using

its Karhunen–Loève expansion. As a result of this procedure, we obtain a doubly spectral decom-

position of the FTS, a Cramér–Karhunen–Loève decomposition (Theorem 2.8.6 and Remark 2.8.7),

where the first layer of decomposition is given by the functional Cramér representation, and the

second layer of decomposition is given by the Karhunen–Loève expansion. Furthermore, we show

that the truncation of the Cramér–Karhunen–Loève leads to a finite dimensional approximation

of the FTS that dominates functional PCA (Theorem 2.8.2 and Remark 2.8.5). The theoretical con-

struction of such a decomposition is closely related to linear filterings of FTSs, and by duality to a

stochastic integral of operator-valued functions (presented in Section 2.5). Some technical measure

theoretic considerations are presented in Section 2.7.

The basic object used in the Cramér–Karhunen–Loève are the spectral density operators (and

their eigenstructure), whose Fourier coefficients are given by the autocovariance operators of the

FTS. The spectral density operators are therefore usually unknown, and must be estimated from

data in applications. Chapter 3 is devoted to development of the theory of estimation for the

spectral density operators. The central tool for estimating the spectral density operators is the

functional discrete Fourier transform (fDFT; Section 3.3). It transforms a dataset of real curves
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(X t )T
t=1 of the time domain into a dataset of complex curves

(
X̃ (T )
ω j

)T

j=1
in the frequency domain that

are asymptotically independent and Gaussian, under appropriate cumulant mixing assumptions

(Theorem 3.3.4), with the spectral density operators as asymptotic covariances. This motivates then

taking the fDFT’s empirical covariance, the periodogram operators, as estimators for the spectral

density operators (Section 3.4). It turns out that the periodogram operators are asymptotically

unbiased (Proposition 3.4.4), but are not consistent due to their non-vanishing variance (Proposi-

tion 3.5.4). However, by smoothing the periodogram locally (on a small window of frequencies),

it is possible to construct estimators with reduced variance, the sample spectral density operators

(Section 3.5). In particular, we can show that the sample spectral density operators are consistent

estimators of the spectral density operators (Theorems 3.6.1 and 3.6.2), and that they are asymp-

totically Gaussian (Theorems 3.6.5 and 3.6.7), under appropriate weak dependence assumptions.

As immediate consequences, we obtain central limit theorems for the mean and the long-run

covariance operator of a stationary functional time series (Corollaries 3.3.6 and 3.6.8). Furthermore,

we show that the eigenstructure of the sample spectral density operators consistently estimates

the eigenstructure of the spectral density operators (Proposition 3.7.2), and is also asymptotically

Gaussian (Theorem 3.7.3).

In practice, functional data are often discretely observed, and contaminated with noise. We there-

fore study in Section 3.8 sufficient conditions under which an estimator of the spectral density

operators based on discrete noisy observations of the curves (X t ) will still be consistent (The-

orem 3.8.3). Our result is general enough to apply to a wide range of smoothing techniques for

converting discrete noisy observations into functional data (Remark 3.8.4). We perform a simulation

study in Section 3.9 to assess the finite sample performance of our estimators, and give a discussion

of the technical assumptions of our results, and at what cost our weak dependence assumptions

could be changed or weakened. In particular, we show (Remark 3.10.3) that any functional linear

process with summable coefficients (in an appropriate sense) and whose innovations have finite

moments will satisfy the technical assumptions of our asymptotic results.

In Chapter 4, we study the problem of understanding the mechanics of DNA, and how the me-

chanical properties that are described at a fine level scale, from a statistical point of view. More

specifically, we are interested in understanding and comparing the dynamics of two closed strands

of DNA (DNA minicircles) that are vibrating in solution. To address this problem, we compare

the dynamics of the DNA minicircles through the lens of the spectral density operators. The first

method we propose is to compare the dynamics of two DNA minicircles by comparing their spectral

density operators at the level of frequencies (Section 4.3), and localizing at which frequencies the

differences occur. This is done by first testing equality of the to spectral density operators marginally

at each frequency (Theorem 4.3.1), and then performing multiplicity corrections (Section 4.3.3).

We conduct numerical simulations to assess the performance of our method (Section 4.3.5). The

second method we propose is to first localize frequencies at which the two spectral density opera-

tors are different, and then localize on the DNA minicircles where the differences occur, through a

multiple testing approach (Section 4.4).

On the technical side, the mathematical foundations of FDA have their roots in functional analysis

and Bochner integrals.
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The deterministic technical challenges with FDA are that the random elements one has to work

with take values in linear spaces with infinite dimension, such as Banach spaces or Hilbert spaces.

Contrary to finite dimensional vector spaces, not all norms are equivalent in infinite dimensions.

For instance, the trace norm of an operator on a Hilbert space—the norm related to the total

variance of random elements—is much stronger and more difficult to work with than the operator

norm, which corresponds roughly to the largest singular value of an operator. In between the

two is the Hilbert-Schmidt norm, which gives a Hilbert space structure to a subspace of the space

of bounded operators. Often, proofs will involve a fair “mix” of these different types of norms,

which might make them difficult to follow. A list of notation has therefore been added to the thesis

(page xvii) to facilitate reading, while the technical background is briefly recalled in Section 1.1, and

more thoroughly in Chapter A.

The concept of random variable in a Banach space is formalized by the Bochner integral, which

is in some sense a generalization of the Lebesgue integral (Lebesgue 1904, Tao 2011) to Banach

space valued functions. Fortunately, many of the properties of the Lebesgue integral extend to the

Bochner integral; we give in Section 1.1 some of its main properties, and a more detailed exposition

in Chapter B.

Further to the Bochner integral, we will be concerned with convergence in distribution for random

elements in Banach spaces; Chapter C reminds some basic facts and gives a useful result for

establishing tightness for the particular case of random elements in Hilbert spaces.



CHAPTER 1

Functional Data Analysis

Functional data analysis (FDA) is the field of statistics that treats complex
data structures —such as smooth curves or surfaces—that depart from the
conventional univariate and multivariate structure. A key feature that dis-
tinguishes functional data from multivariate or high-dimensional data is
their dimension. Functional Data is assumed to belong to a (often linear)
infinite dimensional space, whereas multivariate or high-dimensional
data is constrained to belong in a finite dimensional space, whose dimen-
sion p is either fixed, or allowed to grow along with the sample size in
asymptotic settings. Another feature that distinguishes functional data is
that they are assumed to have some inherent smoothness, in contrast with
multivariate data, for which smoothness is not meaningful. FDA is now a
well established field. Its roots can be traced at least back to Grenander
(1981), and the current literature on the subject is very rich. The main
references on the subject are (Ramsay & Silverman 2005, Ramsay et al.
2009, Ferraty 2011, Horváth & Kokoszka 2012, Ferraty & Vieu 2006, Ferraty
& Romain 2011).

We introduce the notation and remind basic concepts of functional anal-
ysis that shall be used throughout the chapter in Section 1.1. We then
present (Section 1.2) basic aspects of FDA, and review in Section 1.3 some
of the theory for inference of functional data in the i.i.d. case. We then
turn to the setting of functional time series (Section 1.4), which is the
main concern of this thesis. We conclude this chapter with the main
motivation of this thesis, which is the need for a generalization of the
Karhunen–Loève expansion to the non-i.i.d. setting (Section 1.5.
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1.1 Some Background Theory

Typically, but not invariably, the random object of interest is X : Ω→
B , where (Ω,O ,P) is a complete probability space, and B is a separable
Banach space, or a separable Hilbert space, whose norm is denoted by ‖·‖.
We usually omit the space of eventsΩ, and say X ∈ B is a random element.
The rigorous definition of random element in a Banach space can be done
through the Bochner integral (see Chapter B).

Since the random element takes values in Banach or Hilbert spaces, we
need to introduce some of their related concepts. A continuous map-
ping T : B1 → B2 between two Banach spaces is called a bounded oper-
ator if it is linear and continuous. Continuity is equivalent to |||T |||∞ =
supx 6=0 ‖T x‖/‖x‖ <∞. The set of bounded operators T : B1 → B2 is de-
noted by S∞(B1,B2), and we also use the abbreviation S∞(B) =S∞(B ,B).
S∞(B1,B2) is in fact a linear space, and is complete under the operator
norm |||·|||∞. It is therefore also a Banach space. For T,S ∈S∞(B), we can
define their composition T S(x) = T (Sx), x ∈ B , which is also a bounded
operator whose norm satisfies |||T S|||∞ ≤ |||T |||∞|||S|||∞. We now turn to
operators on separable Hilbert spaces. Since these are Banach spaces
with additional structure (given by their inner-product 〈·, ·〉 : H ×H →C),
the definition of bounded operator extends to Hilbert spaces. A bounded
operator T ∈ S∞(H1, H2) between two Hilbert spaces is called compact
if it can be written as T =∑∞

n=1λn(T )ϕn ⊗2ψn , where (λn(T ))n≥1 is a se-
quence of decreasing positive numbers tending to zero (the singular val-
ues of T ), the sequences

(
ψn

)
n≥1, respectively

(
ϕn

)
n≥1 are orthonormal

sequences in H1, respectively H2, and ϕ⊗2ψ is a linear operator defined
by ϕ⊗2ψ( f ) = 〈

f ,ψ
〉
ϕ for f ,ψ ∈ H1, ϕ ∈ H2. Note that compactness is a

restrictive property: for instance, the identity operator on H is not com-
pact. The class of compact operators is denoted by Sc (H1, H2). For any
compact operator T ∈Sc (H1, H2), we can define its Schatten p-norm by
|||T |||p = (∑

n≥1λn(T )p
)1/p , for p ∈ [1,∞), and |||T |||∞ = supn λn(T ). They

are both well defined, due to the uniqueness of the singular value de-
composition. The Schatten ∞-norm is equal to the operator norm when
restricted to compact operators, and hence poses no conflict of notation.
The Schatten p-norm is indeed a norm (for each p ∈ [1,∞]), and the space

Sp (H1, H2) = {
T ∈Sc (H1, H2) : |||T |||p <∞}

is a Banach space when equipped with the norm |||·|||p . It is called the
Schatten p space. The abbreviation Sp (H) =Sp (H , H) is often used. The
Schatten norms follow the inequality |||·|||p ≥ |||·|||q if 1 ≤ p ≤ q ≤∞, which
implies the following chain of inclusions,

S1(H1, H2) ⊂Sp (H1, H2) ⊂Sq (H1, H2) ⊂Sc (H1, H2) ⊂S∞(H1, H2),

for 1 ≤ p ≤ q ≤∞. A Hölder inequality also holds for Schatten spaces, and
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is very useful: if T ∈Sp (H), S ∈Sq (H), for p, q ∈ [1,∞], we have

|||T S|||r ≤ |||T |||p |||S|||q , r−1 = p−1 +q−1.

The Schatten space S2(H1, H2) is called the space of Hilbert–Schmidt
operators, and is in fact a Hilbert space when equipped with the inner
product

〈T,S〉S2 =
∑

n≥1
〈Ten ,Sen〉, T,S ∈S2(H1, H2),

where the sum extends over any orthonormal basis (en)n≥1 of H1, and
is independent of the choice of the basis. The corresponding norm is
given by |||T |||22 = ∑

n≥1 ‖Ten‖2. The Schatten space S1(H) is also quite
important, and is called the space of nuclear operators on H , or trace-class
operators on H , because we can define the trace for its elements:

Tr(T ) =
∑

n≥1
〈Ten ,en〉, T ∈S1(H),

where the sum extends over any orthonormal basis (en)n≥1 of H , and
is independent of the choice of the basis. In particular, |Tr(T )| ≤ |||T |||1,
and therefore the trace is a continuous linear functional on S1(H). Fur-
thermore, if T is a positive operator, i.e. 〈T x, x〉 ≥ 0 for all x ∈ H , then
Tr(T ) = |||T |||1. Notice that the Hölder inequality tells us that T S and ST
are trace class if T ∈S1(H ) and S is any bounded operator. A Hilbert space
that we will often use is H = L2 ([0,1],R), or H = L2 ([0,1],C). In both cases,
the inner-product is given by

〈
f , g

〉= ∫ 1
0 f (τ)g (τ)dτ, where α denotes the

complex conjugate of α ∈C. More details about operators on Banach or
Hilbert spaces are given in Chapter A.

Let us now come back to random elements. Let X ∈ B be a random
element, where B is a separable Banach space. If E‖X ‖ <∞, the expecta-
tion of X exists, and is defined as the unique element EX ∈ B satisfying
φ(EX ) = Eφ(X ) for all linear and continuous functionals on B . It satisfies
the contraction property ‖EX ‖ ≤ E‖X ‖, and commutes with any bounded
operator T ∈ S∞(B ,B1), i.e. T EX = E [T X ]. A random element X ∈ H ,
where H is a separable Hilbert space, has a mean µ = EX if E‖X ‖ <∞,
and a covariance operator R = E

[
(X −µ)⊗2(X −µ)

]
if E‖X ‖2 <∞. The

covariance operator is a trace-class operator, and since the trace is a
continuous and linear, we have

Tr(R) = E
[
Tr

(
(X −µ)⊗2(X −µ)

)]= E
∥∥X −µ∥∥2,

which illustrates the fundamental relation between the total variance
and the nuclear norm. If Y ∈ H is another random element with
E‖Y ‖2 <∞, the cross-covariance operator of X and Y is defined by

RX ,Y = E [(X − EX )⊗2 (Y − EY )].
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It is a nuclear operator, and therefore

Tr
(
RX ,Y

)= E [Tr((X − EX )⊗2 (Y − EY ))] = E〈(X − EX ) , (Y − EY )〉.

More details and results concerning random elements in Banach or
Hilbert spaces are given in Chapter C.

1.2 Basic Aspects of Functional Data Analysis

The typical setting of functional data analysis (FDA) is concerned with in-
ference on the law of a random function X ∈ L2 ([0,1],R), with E‖X ‖2 <∞,

based on a sample X1, . . . , Xn
iid∼ X . The random function X can be thought

of as a collection of random variables {X (τ) : τ ∈ [0,1]}. A crucial assump-
tion concerning this collection of random variables is that it is assumed
to be smooth with respect to the parameter τ. Smoothness is meant in a
broad sense here, and can range from assuming continuity of the sample
paths of X —which is sometimes modeled by assuming that X is a random
element of the Banach space C ([0,1],R)—or by assuming that the sample
paths are k times differentiable—by assuming X is a random element
of the Sobolev space W k,2([0,1],R). Most often, the chosen space is a
Hilbert space (an assumption that simplifies considerably the derivation
of asymptotic results), and we shall therefore assume in this Chapter that
the random function X takes values in L2 ([0,1],R). We mention how-
ever that work has also been done on departing from the linear space
assumption (e.g. (Chen & Müller 2012)), and is a growing area.
The main objects describing the random function X are the mean function
and the covariance surface:

Definition 1.2.1.
Assuming E‖X ‖2 <∞, the mean function µ ∈ L2 ([0,1],R) is defined by

µ(τ) = E [X (τ)], τ ∈ [0,1],

and the covariance surface, or covariance kernel r ∈ L2
(
[0,1]2,R

)
is defined

by
r (τ,σ) = E

[(
X (τ)−µ(τ)

)(
X (σ)−µ(σ)

)]
, τ,σ ∈ [0,1].

Interpretation is helped by analogy to the multivariate case: The mean
function is the functional analogue of the mean vector, and the covariance
surface in the analogue of the covariance matrix. The covariance surface
induces by right integration an linear operator R on L2 ([0,1],R), whose
eigenstructure plays a central role in FDA:

Rh(τ) =
∫ 1

0
r (τ,σ)h(σ)dσ, h ∈ L2 ([0,1],R);τ ∈ [0,1]. (1.2.1)

The covariance operator is well defined if E‖X ‖2 < ∞, and is a non-
negative self-adjoint and trace-class operator on L2 ([0,1],R), with singular
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value decomposition

R =
∞∑

n=1
λnϕn ⊗2ϕn , see equation (A.2.7) on

page 219 for the

definition of ⊗2

(1.2.2)

(see e.g. Bosq (2000)), where λn denotes the n-th largest eigenvalue (i.e.
λ1 ≥ λ2 ≥ . . .0), ϕn denotes the corresponding eigenfunction, and the
convergence of the series holds with respect to the nuclear norm |||·|||1.
The eigenfunctions are of course not identifiable, but each eigenprojection
ϕn ⊗2ϕn is identifiable, provided λn is an eigenvalue of multiplicity one.
Dimension reduction techniques play a important role in multivariate
analysis, but it is no exaggeration to say that their role in FDA is central,
because the random elements dealt with are intrinsically infinite dimen-
sional. The functional counterpart of principal component analysis (PCA),
functional PCA (fPCA), is given by the celebrated Karhunen–Loève ex-
pansion (see e.g. Karhunen (1947), Lévy (1948), Ash & Gardner (1975),
Grenander (1981)):

Proposition 1.2.2 (Karhunen–Loève Expansion, L2 version).
Let X ∈ L2 ([0,1],R) be a random function with E‖X ‖2 <∞, with covari-
ance operator given by (1.2.2). The random function X admits the decom-
position

X =µ+
∞∑

n=1
ξnϕn , (1.2.3)

where ϕn is defined in (1.2.2), ξn = 〈
ϕn , X −µ〉

, Eξn = 0 and E [ξnξm] =
λnδn,m , with δn,m = 1 if n = m, and zero otherwise. The convergence of the
series holds in mean square, in L2 ([0,1],R):

E

∥∥∥∥∥X −µ−
K∑

n=1
ξnϕn

∥∥∥∥∥
2

= ∑
n>K

λn
K→∞−→ 0.

The Karhunen–Loève expansion yields a separation of the random func-
tion X into a sum of random variables (the ξns, also known as the scores)
times orthogonal deterministic functions (ϕn). Of course, any orthogonal
basis of L2 ([0,1],R) would yield such a decomposition, but (1.2.3) has the
additional property that the random variables (ξn) are uncorrelated (even
independent in the Gaussian case), and that truncation of the series (1.2.3)
at a finite level K yields the best K -dimensional linear approximation of
X (also known as the best basis property). More precisely, this means that
the solution to

arg min
P∈PK

E
∥∥X −µ−P (X −µ)

∥∥2, (1.2.4)

where PK is the space of all orthogonal projections on L2 ([0,1],R) with
rank at most K , is given by P = ∑K

n=1ϕn ⊗2ϕn , the projection onto the
subspace of the first K eigenfunctions of R, or in other words, P (X −µ) =∑K

n=1 ξnϕn . Assuming continuity of the covariance kernel of X yields an
even stronger result:
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Proposition 1.2.3 (e.g. Ash & Gardner (1975), Grenander (1981)).
Under the same setting as Proposition 1.2.2, with the additional condi-
tion that (τ,σ) 7→ r (τ,σ) is continuous—or equivalently that τ 7→ X (τ) is
continuous in mean square—we have:

(i) Mercer’s Lemma:

the eigenfunctions ϕn are continuous, and the convergence of the
series expansion

r (τ,σ) =
∞∑

n=1
λnϕn(τ)ϕn(σ) (1.2.5)

holds uniformly and absolutely on [0,1]2.

(ii) Karhunen–Loève expansion (strong form):

the convergence of (1.2.3) holds uniformly in mean square:

sup
τ∈[0,1]

E

(
X (τ)−

K∑
n=1

ξnϕn(τ)

)2
K→∞−→ 0.

The Karhunen–Loève expansion is also useful for computing linear and bi-
linear functionals of random elements. For instance, if X ,Y are random el-
ements of L2 ([0,1],R) with Karhunen–Loève expansions
X = ∑

n≥1 ξnϕn and Y = ∑
n≥1 ζnψn , and f : L2 ([0,1],R) → B is a linear

and continuous mapping into a Banach space, then

f (X ) = ∑
n≥1

ξn f (ϕn),

where the right-hand side converges in mean. Furthermore, if

g : L2 ([0,1],R)×L2 ([0,1],R) → B

is a bounded multilinear mapping, then

g (X ,Y ) = ∑
n,m≥1

ξnζm f (ϕn ,ψm),

where the right-hand side converges in mean. In particular, the
Karhunen–Loève expansion can be used to compute the covariances
of two random elements (see Section 3.7.6 for a concrete example).
To use of the Karhunen–Loève expansion in practice, one needs to esti-

mate the eigenfunctions ϕ1, . . . ,ϕK from a sample X1, . . . , Xn
iid∼ X . How-

ever, the curves X1, . . . , Xn are usually not entirely observed, but observed
on a discrete grid, possibly with some noise. We therefore describe briefly
the preprocessing steps usually taken to transform the discrete noisy
observations into a functional sample X1, . . . , Xn .
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1.2.1 Preprocessing Steps

1.2.1.1 Projection to Functional Data

The recorded data for the curve Xi —assuming pointwise evaluation of
the curve makes sense—consist usually of pairs

{
(τi j ,Yi j ) : j = 1, . . . , Ni

}
,

following the sampling model

Yi j = Xi (τi j )+εi j , i = 1, . . . ,n; j = 1, . . . , Ni , (1.2.6)

where τi j ∈ [0,1] is the location at which the j -th observation of curve
i occurs, and Ni is the number of observations for curve i (both can be
assumed to be either deterministic or random). The variables εi j denote
the noise in the observation, and are usually assumed to be independent.
Both Xi (τi j ) and εi j are not observed.

The first step in FDA is the transformation of such data into functional
data; this is usually done by some kind of smoothing, either based on least
square estimation of the functions Xi through a finite basis expansion,
or by localized procedures, such as kernel smoothing or localized basis
and polynomial expansions (Wand & Jones 1995, Fan & Gijbels 1996,
Efromovich 1999, Ramsay & Silverman 2002, 2005). Basis expansion is
arguably the most used procedure, and the commonly used bases are
the Fourier basis, the B-spline basis, and the wavelet basis, to cite only
the most popular (Sy et al. 1997, Yao & Lee 2006, Morris & Carroll 2006,
Pigoli & Sangalli 2012). The number of basis functions K is often chosen
sufficiently high, to allow the expansion to capture local features of the
curves Xi , and an additional penalty for the roughness of the fitted curve
is often added to the least squared penalty, typically through by penalizing
the norm of a differential operator applied to Xi (e.g. (Ramsay & Silverman
2005, Sangalli et al. 2009)).

1.2.1.2 The Problem of Registration

The second step in FDA is the registration of the functional data. The basic
idea is that the observations X1, . . . , Xn do not correspond to a random
sample from X , but to a random sample from X ∗, where X ∗(τ) = X (γ(τ)),
and γ is a random function taking values in the (non-linear) space of
increasing bijective functions [0,1] 7→ [0,1]. Denoting the observed sample
X ∗

1 , . . . , X ∗
n , where X ∗

i = Xi ◦γ, and ◦ denotes the composition of functions,
the goal of registration is to separate the functions X1, . . . , Xn andγ1, . . . ,γn ,
to allow further inference about X , and possibly about γ (see e.g. Liu &
Müller (2004), Srivastava et al. (2011)). Of course, the choice of the space
in which γ takes values in intimately related to the qualitative interests in
the variability of X , but is usually also constrained to avoid identifiability
issues.
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1.3 Inference for Functional Data: the i.i.d. Setup

We now give some of the main results concerning inference for functional
data in the i.i.d. setup.

1.3.1 Estimation of the Mean Function and Covariance Surface

We now assume that we have observed a sample of curves X1, . . . , Xn
iid∼ X ,

and wish to estimate the mean function and the covariance surface (or
operator) of X . The estimators for the mean function, respectively the
covariance operator, are similar to those of the multivariate case, and are
given by the sample mean

X = n−1
n∑

j=1
X j ,

and the sample covariance operator

R̂ = 1

n

n∑
j=1

(
X j −X

)
⊗2

(
X j −X

)
,

respectively. Results analogous to the multivariate setup hold for asymp-
totics of the sample mean:

Theorem 1.3.1 (e.g. Bosq (2000)).

Let X1, . . . , Xn
iid∼ X , where X is a random function in L2 ([0,1],R) (or in any

separable Hilbert space).

(i) Strong Law of Large Numbers If E‖X ‖ <∞, then

X
a.s.−→µ, n →∞,

with respect to ‖·‖.

(ii) Central Limit Theorem If E‖X ‖2 <∞, then

n1/2
(

X −µ
)

d−→ Z , n →∞,

where Z is a Gaussian random element of L2 ([0,1],R) with mean
zero and covariance operator R.

This is a strong result, since it is valid for X a random variable of any
separable Hilbert space. In particular, taking H to be the space of Hilbert–
Schmidt operators S2(L2 ([0,1],R)), the previous theorem implies that
the strong law of large numbers holds for R̂ with respect to the Hilbert–
Schmidt norm (in fact also with respect to the nuclear norm by the Strong
Law of Large Numbers on Banach spaces) provided E‖X ‖2 <∞. Further-
more, provided E‖X ‖4 <∞, n1/2(R̂−R) is asymptotically Gaussian, with
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limiting covariance operator given by

E
[
(X ⊗2 X −R)

⊗
2(X ⊗2 X −R)

]= ∑
i , j ,k,l≥1

E
[
ξiξ jξkξl

]
(ϕi ⊗2ϕ j )

⊗
2(ϕk ⊗2ϕl )

− ∑
i , j≥1

λiλ j (ϕi ⊗2ϕi )
⊗

2(ϕ j ⊗2ϕ j ),

where ξn and ϕn are given by the Karhunen–Loève expansion of X (see
Proposition 1.2.2). The last expression may be further simplified if X is
Gaussian (see Dauxois et al. (1982) for details).

1.3.2 Estimation of the Eigenstructure of the Covariance Operator

As a by-product, the asymptotic normality of the sample eigenvalues and
eigenprojections follows from results in perturbation theory, both with the
same n1/2 rate (see Dauxois et al. (1982), Mas & Menneteau (2003), Hall
& Hosseini-Nasab (2006)), which can be improved with assumptions on
higher moments, using Bernstein’s exponential inequality (Mas & Ruym-
gaart 2014, to appear). However, estimation of the eigenfunctions is more
difficult than the estimation of the eigenvalues; the eigenvalue spacings
{λn−1 −λn ,λn −λn+1} have a first-order effect on the estimation ofϕn , but
only a second-order effect on the estimation of λn (Hall & Hosseini-Nasab
2006).
We also mention that work has been done on combining the projection of
the discrete data and the estimation steps. For instance, Cai & Yuan (2011)
derive minimax rates for the estimation of the mean function under both
sparse and dense sampling. Yao, Müller & Wang (2005) investigated the
estimation of the eigenvalues when the observations for each curves are
sparse. Benko et al. (2009) study the estimation of the eigenvalues and
eigenfunctions in the dense sampling setup.
There has been a considerable amount of work in extending models
for multivariate data into the functional framework. The major idea
for doing so is to project the functional data onto the linear subspace
spanned by the first K empirical principal components, thus obtaining a
K -dimensional approximation of the data, and then applying the ideas
of multivariate analysis. When doing so, the appropriate choice of K of
crucial importance, and is also a difficult problem. Roughly speaking, a
K too small leads to a crude approximation of the functional data, and a
too large value of K yields bad statistical properties due to ill-posedness
issues.

1.3.3 Inference for Functional Data: Departure from the i.i.d. As-
sumption

Modeling functional data that are not i.i.d. can be done by adding a co-
variate. In the linear case, this can be done by the functional linear model
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(FLM)
Y =A X +ε

where Y /X are either functional/functional, multivariate/functional or
functional/multivariate, X & ε are random and independent from each
other, and A is a Hilbert–Schmidt operator. The functional linear model
has been widely studied (He et al. 2000, Cai & Hall 2006, Cardot, Ferraty &
Sarda 2003, Cardot et al. 1999, Cardot, Ferraty, Mas & Sarda 2003, Hall &
Horowitz 2007, Hilgert et al. 2013, Crambes & Mas 2013, Cai & Yuan 2012).
Various extensions to the FLM have also been proposed. For instance,
James et al. (2009) present an “interpretable” extension for the case where
Y is univariate and X is functional, by using a Lasso-type penalization
(see Tibshirani (1996, 2011)). Aston, Chiou & Evans (2010), Hadjipantelis,
Aston & Evans (2012) study the linear mixed model extension. Müller &
Stadtmüller (2005) introduce the generalized functional linear models.
He, Müller, Wang & Yang (2010) study the connection between the FLM
and Functional canonical analysis.
Non-parametric modelling has also been extended to the functional set-
ting. See Ferraty & Vieu (2006) and references therein for more details.

1.4 Functional Time Series

Though the i.i.d. setup is appropriate in many problems, many other
problems have a natural dependency structure, that can be modeled for
instance through a time series structure. Let us give an example. Let Yt ,h

denote the temperature recorded at PullyPully is a municipality

in Switzerland on the

shores of Lac Léman,

nearby Lausanne

on day t and at time h ∈ [0,24]. If
we define X t = (Yt ,h)h∈[0,24], then X t is a curve describing the temperature
in Pully during day t , and the series (X t )t=1,2,... is not i.i.d., but can be
modelled as a time series of functional data, or functional time series.
In this section, we review the basic theory of functional time series, and
motivate the subject of this thesis.
A functional time series (FTS) is a sequence (X t : t ∈Z) where each X t is
a random element in L2 ([0,1],R). The study of functional time series is
mostly done—explicitly or implicitly—under the assumption of second-
order stationarity, or even strict stationarity:

Definition 1.4.1.
A functional time series (X t : t ∈Z) is said to be second-order stationary if
EXs and E [X t+s ⊗2 Xs] are independent of s ∈Z, for all t ∈Z, and strictly
stationary if for any k = 1,2, . . . , and any t1, . . . , tk ∈ Z, the joint law of{

X t1+s , . . . , X tk+s
}

is independent of s ∈Z.

Second-order stationarity says that the first and second-order moments of
the FTS are invariant by time-shifts. Strict stationarity is stronger (and im-
plies second-order stationarity) because it imposes that all the moments
of the FTS are invariant by time-shifts (and even more if the distribution
is not determined by the moments). Second-order stationarity implies
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that the second-order structure of the FTS is encoded by the lag-t autoco-
variance operators

Rt = E
[(

X t+s −µ
)(

Xs −µ
)]

, t ∈Z, (1.4.1)

which are independent of s , and where µ = EXs is the mean function
(both being independent of s due to the stationarity assumption).

1.4.1 Linear models for Functional Time Series

Perhaps the easiest and most tractable model for functional time series
is the functional autoregressive model of order 1, FAR(1) (see e.g. Bosq
(2000), Mas (2007)),

X t+1 −µ=A (X t −µ)+εt , t ∈Z, (1.4.2)

where A is a bounded operator on L2 ([0,1],R), µ ∈ L2 ([0,1],R), and
(εt : t ∈Z) is a mean zero and uncorrelated ( E [εt ⊗2 εt ′ ] = δt ,t ′) FTS in
L2 ([0,1],R). When

∣∣∣∣∣∣A j
∣∣∣∣∣∣∞ < 1 for some positive integer j , then (1.4.2)

has a unique stationary solution given by

X t =µ+
∞∑

j=0
A jεt− j , t ∈Z, (1.4.3)

see Bosq (2000, Theorem 3.1). This casts the FAR(1) model into the more
general framework of functional linear processes (FLP)

X t =µ+
∞∑

j=−∞
A jεt− j , t ∈Z, (1.4.4)

where
(
A j : j ∈Z)

is a sequence of bounded operators on L2 ([0,1],R).
Based on a stretch of data X1, . . . , XT , the mean function µ is estimated
by the sample mean X T , and the lag-t autocovariance operator Rt is
estimated by the sample lag-t autocovariance operators

R̂t =
T−t∑
j=1

X j+t ⊗2 X j , t = 1, . . . ,T −1.

Under summability assumptions on the norms of the operators A j , there
is a central limit theorem (CLT) for the mean and autocovariances of FLPs:

Theorem 1.4.2 (Merlevède et al. (1997), Mas (2002), Mas & Pumo (2011),
Bosq (2000)).

Let X t be a FLP satisfying
∑

j∈Z
∣∣∣∣∣∣A j

∣∣∣∣∣∣∞ <∞, and with i.i.d. noise sequence
(εt : t ∈Z) . Let C = E [ε0⊗2 ε0]. Then
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1. If E‖ε0‖2 <∞,

p
T

(
X T −µ

)
d−→ N , T →∞ (1.4.5)

where N is a Gaussian random element with mean zero, and covari-
ance operator AC A†, where A =∑

j∈ZA j .

2. If E‖ε0‖4 <∞, then for any fixed positive integer h,

p
T

(
R̂0 −R0,R̂1 −R1, . . . ,R̂h −Rh

)
d−→G , T →∞,

where G = (G0, . . . ,Gh) is a Gaussian random element inS2(H) denotes the

space of

Hilbert–Schmidt

Operators on H, see

Section A.2.2.2 on

page 220

(
S2(L2 ([0,1],R))

)h+1

with mean zero, and blockwise covariance structure given by

E
[
Gp ⊗2 Gq

]= ∑
j∈Z

(
R(p−q)+ j

⊗̃
2 R†

j +Rq+ j
⊗̃

2 R†
j−p

)
+Bq (Λ−Φ)Bp , (1.4.6)

where Bp ,Λ and Φ are operators on S2(L2 ([0,1],R)), defined by

Bp = ∑
j∈Z

A j+p
⊗̃

2 A j , p = 0, . . . ,h,

Λ= E
[
(ε0⊗2 ε0)

⊗
2(ε0⊗2 ε0)

]
,

and

Φ(T ) =C (T +T †)C +〈T,C〉S2 C , T ∈S2(L2 ([0,1],R)).

A few remarks:

Remark 1.4.3.

1. For the univariate linear process yt =∑
j∈Z a j εt− j , where (ε j : j ∈Z)

is i.i.d. with mean zero and finite variance, and (a j : j ∈ Z) is a
sequence of real numbers, the condition

∑
j∈Z |a j |2 <∞ ensures thatp

T
∑T

t=1 yt /T is asymptotically Gaussian. However, in the functional
case, although the condition∑

j∈Z

∣∣∣∣∣∣A j
∣∣∣∣∣∣2

∞ <∞, (1.4.7)

ensures that the series (1.4.4) is convergent in mean square and al-
most surely (see Merlevède (1996) and references therein), (1.4.7) is



1.4 FUNCTIONAL TIME SERIES 17

not a sufficient condition for the CLT (1.4.5) to hold, and the con-
dition

∑
j∈Z

∣∣∣∣∣∣A j
∣∣∣∣∣∣∞ <∞ seems to be necessary (see Merlevède et al.

(1997, Theorem 3)).

2. Notice that if A0 = Id, the identity operator, and A j = 0 for all j 6= 0,
then R̂0, . . . ,R̂h are asymptotically independent. In particular, this
allows developing portmanteau-type tests for checking if a functional
time series is actually uncorrelated (e.g. Horváth & Kokoszka (2012),
Horváth, Hušková & Rice (2013)).

3. As in the i.i.d. setup, as byproduct of the CLT (1.4.6), the eigenvalues
and eigenprojections of the sample lag-h autocovariance operators
(h fixed) are asymptotically Gaussian, with

p
T convergence rate

(Mas & Menneteau 2003).

The FLP model has been thoroughly studied (e.g. Bosq (2000), Mas (2002),
Bosq & Blanke (2007), Mas & Pumo (2011)), and used for forecasting
purposes (Bosq 2000, Besse et al. 2000, Antoniadis & Sapatinas 2003, An-
toniadis et al. 2009), and also for change-point detection (Horváth et al.
2010). Various extensions have also been proposed. For instance, Damon
& Guillas (2005) include exogenous variables for improving the prediction
accuracy, and Cugliari (2013) proposes an autoregressive model where the
operator A in (1.4.2) is allowed to depend on an exogenous vector time
series.

1.4.2 Beyond Linearity Assumptions for Functional Time Series

Though linear models for FTS play an important role for modelling depen-
dent functional data, the linearity assumption might not be appropriate in
some situations (such as for modelling the errors in fMRI time series; see
Aston & Kirch (2012b)). In order to make inferences on a stationary FTS
(X t : t ∈Z) without any linear structural assumption, one needs to assume
some decay of the dependency between (X t : t < s1) and (X t : t > s2), as
s2−s1 →∞. We will call any such conditions weak dependence conditions.
There are several ways of rigorously imposing weak dependence. Perhaps
the most famous one, stemming from univariate time series analysis, is
α-mixing.

Definition 1.4.4 (Rosenblatt (1985), Doukhan (1994)).
Let {X t : t ∈Z} be a stationary functional time series. Let

α(n) = sup
A∈F−

0 ,B∈F+
n

|P (A∩B)−P(A)P(B)| (1.4.8)

where F−
k = σ(. . . , Xk−1, Xk ), respectively F+

k = σ(Xk , Xk+1, . . .), is the σ-
algebra generated by all the FTS up to time k, respectively from time k
onwards. {X t } is called α-mixing, or strong mixing, if

α(n) → 0, n →∞.
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If α(n) =O(rn) with rn → 0, then {X t } is said to be α-mixing with rate rn .

Antoniadis et al. (2006) study the prediction of FTS under α-mixing condi-
tions, and propose a nonparametric resampling method for constructing
pointwise prediction intervals. Aston & Kirch (2012b,a) study the problem
of change-point detection under α-mixing conditions, and apply it to the
study of fMRI data.
In general, α-mixing yields very sharp results (Bradley 2007a,b,c), but
it not easily verifiable in practice. Moreover, α-mixing fails in simple
examples of linear processes, such as for the AR(1) process

Yt+1 = 1

2
Yt +εt ,

where εt are Bernoulli innovations (Andrews 1984). Another way of impos-
ing the decay of dependence is through Lp -m-approximability, a notion
introduced by Hörmann & Kokoszka (2010):

Definition 1.4.5.
A FTS {X t : t ∈Z} with E‖X t‖p <∞ is called Lp -m-approximable if each
X t admits the representation

X t = f (εt ,εt−1, . . .), (1.4.9)

where the (εt : t ∈Z) iid∼ ε are elements taking values in a measurable space
S,

f : S∞ → L2 ([0,1],R)

is a measurable function, and

∞∑
t=1

(
E‖X0 −X (t )

0 ‖p
)1/p <∞, (1.4.10)

where X (t )
0 = f (ε0,ε−1, . . . ,ε−(t−1),ε′−t ,ε′−t−1, . . .), and (ε′t : t ≤ 0) are i.i.d.

copies of ε, and independent of (εt : t ∈Z).

The intuition behind Lp -m-approximability is that the dependence of X t

(with respect to the stochastic Lp -norm) on the i.i.d. sequence (εs : s ≤ u)
should be decreasing fast enough as t −u →∞, such that (1.4.10) holds.
Though Lp -m-approximability is not directly comparable with α-mixing,
it seems to be a weak dependence concept that is easier to verify in prac-
tice; Hörmann & Kokoszka (2010) give conditions under which functional
linear processes, the product model, or the functional bilinear process
are Lp -m-approximable. Concerning inference, Horváth, Kokoszka &
Reeder (2013) show the asymptotic normality of the sample mean un-
der L2-m-approximability, derive a consistent estimator of the long-run
autocovariance operator

∑
t∈ZRt under slightly stronger assumptions,

and apply these results to the problem of comparing the mean function
of two FTS. Hörmann & Kokoszka (2010) study the effect of dependence
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on fPCA. They show that the lag-0 autocovariance operator of a L4-m-
approximable FTS can be consistently estimated, and as a by-product
they show consistency of the sample eigenvalues and eigenprojections.
Kokoszka & Reimherr (2013) extend this result by showing that the L4-
m-approximability actually implies the asymptotic normality of these
estimators. Lp -m-approximability has also been used for change-point
analysis of FTS (Hörmann & Kokoszka 2010, Zhang et al. 2011, Aue, Hör-
mann, Horváth & Hušková 2014, to appear, Aston & Kirch 2012b,a), and
prediction (Aue, Norinho & Hörmann 2014, to appear). Kokoszka (2012)
gives an review of the literature on dependent functional data.

1.5 Is the Karhunen–Loève Expansion Sensible for

Functional Time Series?

Most of the methodology for tackling functional time series relies on
truncations of the Karhunen–Loève expansion

X t =
∑

n≥1

√
λnξ

t
nϕn ,

where R0 =∑
n≥1λnϕn ⊗2ϕn is the eigen-decomposition of the lag-0 auto-

covariance operator of X t , and ξt
n = 〈

X t ,ϕn
〉

/
√
λn . Though this approach

is sensible in the i.i.d. setting, we argue that it is not the best approach
in the presence of dependence, since it is only based on the lag-0 au-
tocovariance operator, and does not take into account any of the lag-t
autocovariance operators of X t (for t 6= 0). In particular, we will show that
there exists a natural extension of the Karhunen–Loève expansion that
dominates the Karhunen–Loève expansion when truncated at the same
level (see Theorem 2.8.2 and Remark 2.8.7).

1.5.1 Objective of the Thesis

The first objective of this thesis is to develop the natural extension of
the Karhunen–Loève expansion to the functional time series setup. This
will be done by a frequency domain approach, by combining a func-
tional Cramér representation for FTS with a Karhunen–Loève expansion
(Chapter 2). The second objective (Chapter 3) is to develop the theory
for estimation of the main objects involved in our frequency domain
approach—the spectra, which play a role analogous to the covariance
operator in the i.i.d. setup. The third objective (Chapter 4) of the thesis
is study the dynamics of DNA strands, and propose a methodology for
comparing their dynamics by comparing their spectra, using some of the
theory developed in Chapters 2 and 3. An appendix containing techni-
cal and background results used in the thesis is given at the end of the
manuscript.





CHAPTER 2
Doubly Spectral

Decompositions of Functional

Time Series

The purpose of this chapter is to develop doubly spectral decompositions
for functional time series, that would generalize the properties of the
Karhunen–Loève expansion to the functional time series setup. Although
an earlier version of results presented in this chapter has been published
(see Panaretos & Tavakoli 2013a), several results presented in this chapter
have weaker assumptions, as discussed in Section 2.9.

2.1 Introduction

Although the Karhunen–Loève expansion plays a central role in functional
data analysis, by providing a canonical decomposition of the random ob-
jects of interests as a series of orthogonal functions with random and
uncorrelated amplitudes, whose truncation enjoys optimality properties,
its use in the context of dependent functional data, such as functional
time series (FTS), is not sensible. Indeed, focusing on the FTS case, we
note that the Karhunen–Loève expansion is only based on the lag-0 auto-
covariance operator of the FTS, and does not take into account the lag-t
autocovariance operators. This means that it only takes into account
the marginal covariation structure of the series (contained in R0), and
does not take into account any covariation across different time indices
t—contained in Rt , t 6= 0—which encode the dynamical properties of the
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series. Furthermore, though the scores of the Karhunen–Loève expan-
sion are uncorrelated within each time point t , they are not uncorrelated
across time. The purpose of this chapter is to develop a decomposition
for functional time series that takes into account all the autocovariance
operators of the series, decomposes the series into a sum of components
that are uncorrelated across all time lags, and which enjoys optimality
properties when truncated at a finite level.

We begin this chapter with a heuristic overview of the results, which moti-
vates the forthcoming developments, and gives some intuition, without
going into the technicalities (Section 2.2). We then introduce in Section 2.3
the main objects upon which this chapter is based, the spectral density
operators. In Section 2.4, we give a functional Cramér representation,
which generalizes the Cramér representation to functional time series,
and develop the theory for Cramér representation of linear filterings of
an FTS in Section 2.5. The proofs of these two sections are given in Sec-
tion 2.6, and is followed by a technical section on some measurability
issues (Section 2.7). The culminating point of this chapter is Section 2.8,
where the properties of the doubly spectral decomposition for functional
time series (uncorrelatedness of the scores, optimality) are given. We also
describe in Section 2.8.2 how an FTS can be represented as a vector time
series with components that are uncorrelated across all time lags. A brief
outlook of the results presented in this chapter, as well as some potential
extensions, is given in Section 2.9.

2.2 Heuristics

The autocovariance operators {Rt }t∈Z of a second-order stationary func-
tional time series X t (taking values in a real part of the complexified
Hilbert space H)See Section A.2.3 on

page 221 for the

definition of

complexified Hilbert

space

encode the complete second-order structure of the time
series {X t }t∈Z, assumed to have mean zero. Corresponding to this se-
quence of operators, there may exist a collection of operators {Fω}ω∈[−π,π],
called the weak spectral density operators, which satisfies

Rt =
∫ π

−π
Fωe itωdω, ∀t ∈Z. (2.2.1)

The autocovariance

operators Rt are

defined on page 15

Provided the {Rt }t∈Z are summable in an appropriate sense, the weak
spectral density operators exist and are defined as the discrete-time Fourier
transform of the autocovariance operators,

Fω = 1

2π

∑
t∈Z

e−iωtRt , ω ∈ [−π,π]. (2.2.2)

(a rigorous definition—and sufficient conditions for its validity—will be
given in Proposition 2.3.5). Now, assume that we can approximate the



2.2 HEURISTICS 23

integral in (2.2.1) by a Riemann sum, to get

Rs =
∫ π

−π
e isωFωdω≈

J∑
j=1

Fω j e isω j (ω j+1 −ω j ),

where −π = ω1 < ·· · < ωJ+1 = π is a partition. Then, we are naturally
tempted to conjecture that X t ought to be decomposable into a sum of
distinct and uncorrelated frequency components,

X t ≈
J∑

j=1
e iω j t X t (ω j ), (2.2.3)

where each X t (ω j ) would be a mean-zero functional time series taking
values in L2 ([0,1],C) with covariance operator close to Fω j (ω j+1 −ω j ),
since, in this case, X t would indeed have covariance

Rt =
J∑

j=1
Fω j e itω j (ω j+1 −ω j ).

We pursue such a decomposition in Section 2.4, where we formalize it as
the functional Cramér representation (Theorem 2.4.3),

X t =
∫ π

−π
e iωt d Zω, a.s.,

for a functional orthogonal increment process Z (independent of t ), thus
extending the classical Cramér representation of multivariate stationary
processes (e.g. Brillinger (2001)).

The Cramér representation provides a spectral decomposition with re-
spect to frequency. Nevertheless, we may pursue a second “layer" of
spectral decomposition in terms of dimension. Going back to the heuris-
tic form (2.2.3), we notice that, for each j = 1, . . . , J , X t (ω j ) is a random
element of L2 ([0,1],C). We may thus represent it through its Karhunen–
Loève (KL) expansion, leading to the heuristic representation

X t ≈
J∑

j=1
e iω j t

∞∑
i=1

ξi , jϕi , j (τ), (2.2.4)

with {ϕi , j }i≥1 being the eigenfunctions of the covariance operator of
X t (ω j ) and {ξi , j }i≥1 the corresponding Fourier coefficients. Truncating
the second series at some K <∞ will yield a decomposition into distinct
frequency elements that are uncorrelated, and finite dimensional,

X t ≈
J∑

j=1
e iω j t

K∑
i=1

ξi , jϕi , j (τ). (2.2.5)

The finite dimensional subspace in which each frequency component
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takes its values need not be the same for distinct j ’s, even though each
of them is of dimension K . In fact, it will turn out that this truncated
representation only possesses K degrees of freedom. One would then
hope that this reduced version of X t (ω j ) would retain the property of be-
ing the optimal (in the L2 sense) K -dimensional reduction of the process
X t . Non-rigorous versions of the decomposition (2.2.4), and its truncated
version (2.2.5), are formally carried out in Section 2.4. Specifically, we
derive the Cramér–Karhunen–Loève decomposition

X t =
∞∑

n=1

∫ π

−π
e iωt (

ϕωn ⊗2ϕ
ω
n

)
d Zω =

∫ π

−π
e iωt

∞∑
n=1

〈ϕωn ,d Zω〉ϕωn , (2.2.6)

where the first equality is rigorous—and is a natural extension of the
Karhunen–Loève expansion to the FTS setup—and the last equality is
understood formally (Remark 2.4.5, Theorem 2.8.6, and Remark 2.8.7).
This is a Cramér representation with respect to frequency, but also a
Karhunen–Loève expansion in terms of dimension, since it can be seen
that {ϕωn }n≥1 is the basis of eigenfunctions of Fω (the covariance opera-
tor of d Zω). Furthermore, by considering the bounded operator-valued
function

K∑
n=1

ϕωn (τ)⊗2ϕ
ω
n (σ)

as a function over [−π,π], and defining the notion of its stochastic integral
(Section 2.5), we show that the truncated representation

X ∗
t =

∫ π

−π
e iωt

(
K∑

n=1
ϕωn ⊗2ϕ

ω
n

)
d Zω (2.2.7)

is well defined, possesses K degrees of freedom, and converges to X t in
mean square as K →∞ (Section 2.8). More importantly, by considering
the process X ∗

t for different values of K , we obtain a harmonic princi-
pal component analysis of X t . That is, we prove (Theorem 2.8.2 and
Remark 2.8.5) that, among all linear reductions X t to a process Wt of only
K degrees of freedom, we have

E‖X t −X ∗
t ‖2 ≤ E‖X t −Wt‖2.

Section 2.8 explains how the process {X ∗
t } can be constructed explicitly,

when the spectral density estimator Fω is known, and how it can be repre-
sented as a stationary vector valued process with uncorrelated coordinates
in RK (see Remark 2.8.11 and Proposition 2.8.12).

Parallel to the rank K reduction, one may want to have a better finite
dimensional approximation of X t (ω j ) for some j ’s, and a cruder one for
other j ’s, depending on how much each ω j contributes to the power of
the signal and/or the effective dimension of each X t (ω j ). This can be
done by letting the dimension K vary with j , leading to the heuristic
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approximation

X t ≈
J∑

j=1
e iω j t X

K j

t (ω j ) =
J∑

j=1
e iω j t

K j∑
i=1

ξi , jϕi , j , (2.2.8)

where X
K j

t (ω j ) is K j -dimensional. It will turn out that such a representa-
tion is also rigorously valid (Theorem 2.8.2), and of the form

X ∗∗
t =

∫ π

−π
e iωt

(
K (ω)∑
n=1

ϕωn ⊗2ϕ
ω
n

)
d Zω

provided that the function K : [−π,π] → {0,1, . . .} yielding the desired finite
rank for each frequency component is measurable. In fact, it will be
shown, that among all linear transformations of the process {X t } having
finite rank K (ω) at each frequency component, this is the optimal one, in
the L2 sense (Theorem 2.8.2).

2.3 The weak spectral density operators and the spec-

tral density operators

Since we want to take a frequency domain approach to study the second-
order structure of functional time series, encoded by the autocovariance
operators (Rt )t∈Z, we need to define their Fourier transforms, which
we will call the spectral density operators. Similarly to classical Fourier
analysis, we can define the spectral density operators either implicitly,
by assuming the existence of a collection of objects (referred to as the
weak spectral density operators) whose Fourier coefficients are the autoco-
variance operators (in an sense that will be made precise Definition 2.3.1
below), or explicitly, by defining the spectral density operators as a Fourier
series, with the autocovariance operators as its coefficients, under summa-
bility conditions of the autocovariance operators (see Proposition 2.3.5).

Definition 2.3.1 (Weak spectral density operators).
Let X t be a second order stationary FTS in the real part of a complexified
separable Hilbert space H, with mean zero, and E‖X0‖2 <∞. We denote
by

Rt = E [X t ⊗2 X0], t ∈Z, (2.3.1)

the lag-t autocovariance operator of X t .
If there exists a function F· ∈ L1([−π,π],S1(H)) such that S1(H) denotes the

space of trace-class

operators on H, see

Section A.2.2 on

page 218

Rt =
∫ π

−π
e iωtFωdω, t ∈Z, (2.3.2)

then F· is called the weak spectral density operators of X t .

Remark 2.3.2.
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1. Notice that any functions f , g satisfying (2.3.2) will be equal almost
everywhere, by Proposition B.0.16, and therefore the weak spectral
density operators are well defined as an element of L1([−π,π],S1(H )),
but cannot be evaluated at any fixed ω ∈ [−π,π].

2. Since ∫ π

−π
e iωtF †

ωdω=
(∫ π

−π
e−iωtFωdω

)†

=R†
−t =Rt ,

the weak spectral density operators are almost everywhere self-adjoint.

If there exists a function F· ∈ L1([−π,π],S1(H)) such that ω 7→ Fω is
continuous with respect to the operator norm |||·|||∞ and Fω satisfies
(2.3.2), then this function is called the spectral density operators of X t . Fω

will be called the spectral density operator at ω. The difference between
the weak spectral density operators and the spectral density operators is
that latter can be evaluated at any ω ∈ [−π,π], whereas the weak spectral
density operators are defined only in a weak sense, since they belong to
an L1 space.
We now define some conditions under which the spectral density opera-
tors of an FTS exist, and is given by the Fourier series of its autocovariance
operators.

Condition 2.3.3.
H is a complexified separable Hilbert space, and X t is a second-order sta-
tionary FTS in the real part of H, with mean zero,
E‖X0‖2 <∞, and satisfies ∑

t∈Z
|||Rt |||∞ <∞

Condition 2.3.4. ∑
t∈Z

|Tr(Rt )| <∞.

Proposition 2.3.5.
Assume Condition 2.3.3 holds. Then, the spectral density operators of X t

are given by

Fω = 1

2π

∑
t∈Z

e−iωtRt , ω ∈ [−π,π], (2.3.3)

where the convergence holds in |||·|||∞, uniformly in ω. Fω is well defined,
continuous in ω (with respect to |||·|||∞), non-negative and compact for all
ω ∈ [−π,π]. It satisfies the inversion formula

Rt =
∫ π

−π
e iωtFωdω, t ∈Z. (2.3.4)

Furthermore, if Condition 2.3.4 also holds, then
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1. the nuclear norm of all the spectral density operators is uniformly
bounded:

sup
ω∈[−π,π]

|||Fω|||1 ≤ (2π)−1
∑
s∈Z

|Tr(Rs)| <∞.

2. The nuclear norm of all the lag-t autocovariance operators are uni-
formly bounded:

sup
t∈Z

|||Rt |||1 ≤
∑
s∈Z

|Tr(Rs)| <∞.

3. ω 7→Fω is |||·|||1-measurable.

4. For almost every ω ∈ [−π,π],

Tr(Fω) =
∑
t∈Z

e−iωt Tr(Rt ).

In other words,ω 7→ Tr(Fω) is equal to a continuous function almost
everywhere.

Proof. Assume Condition 2.3.3 holds. Let us write

A(T )(ω) = (2π)−1
∑

t<|T |
e−iωtRt .

A(T )(ω) is uniformly continuous in ω, and by the triangle inequality, it
is a Cauchy sequence in S∞(H), and converges to Fω uniformly in ω.
Since F· is the uniform limit of uniformly continuous functions, it is also
uniformly continuous (with respect to |||·|||∞). Now let

p(T )
ω = T −1

T−1∑
s,t=0

e−iω(t−s)X t ⊗2 Xs = T −1

(
T−1∑
t=0

e−iωt X t

)
⊗2

(
T−1∑
s=0

e−iωs Xs

)
.

We see that Ep(T )
ω is a positive symmetric operator, and using the second-

order stationarity, we get

Ep(T )
ω = T −1 (

A(0)(ω)+ A(1)(ω)+·· ·+ A(T−1)(ω)
)

;

see Lemma 3.4.2. In particular ||| Ep(T )
ω |||1 <∞, Ep(T )

ω is compact, and

lim
T→∞

Ep(T )
ω →Fω,

in |||·|||∞, since it is a Cesaro-sum of a convergent sequence. Therefore,
the spectral density operators are compact operators (since compact
operators form a closed subspace of the space of bounded operators).
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Furthermore, for any ϕ ∈ H ,〈
Fωϕ,ϕ

〉= lim
T→∞

〈
(Ep(T )

ω )ϕ,ϕ
〉≥ 0,

which shows that the spectral density operators are all non-negative.
Let us now turn to the inversion formula. First, notice that

∫ π
−πFωe iωsdω

is well defined, since |||Fω|||∞ ≤∑
t∈Z |||Rt |||∞ <∞. Let φ : S∞(H) →C be

a continuous linear functional (an element of the dual of S∞(H)). We
have

φ

(∫ π

−π
Fωe iωsdω

)
=

∫ π

−π
φ(Fω)e iωsdω

=
∫ π

−π
lim

T→∞
φ

(
A(T )(ω)

)
e iωsdω.

Since
∣∣φ(

A(T )(ω)
)∣∣ ≤ ∣∣∣∣∣∣φ∣∣∣∣∣∣∞∑

t∈Z |||Rt |||∞ < ∞, the dominated conver-

gence theorem yields

φ

(∫ π

−π
Fωe iωsdω

)
= (2π)−1 lim

T→∞

T∑
t=−T

φ(Rt )
∫ π

−π
e iω(s−t )dω

=φ(Rs).

Therefore, since the previous equality holds for all φ in the dual of S∞(H ),
we get

Rs =
∫ π

−π
Fωe iωsdω, s ∈Z.

Now assume that Condition 2.3.4 also holds. Let (en)n≥1 be an orthonor-
mal basis of H . Since the spectral density operators are non-negative, the
continuity of the scalar product and Fatou’s lemma yield

|||Fω|||1 =
∑

n≥1
〈Fωen ,en〉 =

∑
n≥1

lim
T→∞

〈
(Ep(T )

ω )en ,en
〉

≤ liminf
T→∞

∑
n≥1

〈
(Ep(T )

ω )en ,en
〉

= liminf
T→∞

Tr
(
Ep(T )

ω

)
= liminf

T→∞
ETr

(
p(T )
ω

)
= liminf

T→∞
(2πT )−1

T−1∑
s,t=0

e−iω(t−s) E〈X t , Xs〉

= liminf
T→∞

(2π)−1
∑

|t |<T

(
1− |t |

T

)
e iωt Tr(Rt ).

Since
∑

t∈Z |Tr(Rt )| <∞, the dominated convergence theorem yields

|||Fω|||1 ≤ (2π)−1
∑
t∈Z

e iωt Tr(Rt ) ≤ (2π)−1
∑
t∈Z

|Tr(Rt )| <∞.
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Taking the nuclear norm of this equation yields

|||Rt |||1 ≤
∫ π

−π
|||Fω|||1dω≤ ∑

s∈Z
|Tr(Rs)| <∞.

Notice that the right-hand side is independent of t . To show that ω 7→Fω

is |||·|||1-measurable, we use Lemma B.0.8: since S1(H) is separable, and
its topological dual consists of all the functionals φT : S1(H) → C, T ∈
S∞(H), where

φT (A) = Tr(T A), A ∈S1(H),

we only need to show that for all T ∈S∞(H ), the complex-valued function
ω 7→φT (Fω) ∈C is measurable. Since

φT (Fω) = ∑
n≥1

〈T Fωen ,en〉,

where the series converges everywhere, and each functionω 7→ 〈T Fωen ,en〉
is continuous and positive, ω 7→φT (Fω) is measurable.

For the final statement, we use Proposition B.0.16: since

Tr(Rs) =
∫ π

−π
e iωsTr(Fω)dω=

∫ π

−π
e iωsG(ω)dω, s ∈Z,

where G(ω) = (2π)−1 ∑
t∈Z e−iωt Tr(Rt ), we get that Tr(Fω) = G(ω) for al-

most everyω ∈ [−π,π]. Since G is an absolutely and uniformly convergent
series of continuous functions on a compact set, G is uniformly continu-
ous. This completes the proof.

2.4 Functional Cramér representation

Now that we have defined the spectral density operators, we construct a
Cramér representation for functional time series, i.e., a functional Cramér
representation. Further to being a milestone in the development of the
doubly spectral decomposition that shall be given in Section 2.8, the
functional Cramér representation is important on its own because it tells
us that any second-order stationary functional time series admitting weak
spectral density operators can be decomposed into a superposition of
uncorrelated processes fluctuating at distinct frequencies.

The following condition, defined for p ≥ 1, will be typically assumed for
the results of this section.

Condition 2.4.1 (p). (X t )t∈Z is a second-order stationary time series in the
real part of a complexified separable Hilbert space H (i.e., an FTS) with
mean zero, E‖X0‖2 <∞, and X t admits weak spectral density operators
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F· ∈ Lp ([−π,π],S1(H)), i.e.

E [X t ⊗2 X0] =Rt =
∫ π

−π
e iωtFωdω, ∀t ∈Z. (2.4.1)

Remark 2.4.2.

1. Notice that Conditions 2.3.3 and 2.3.4 imply Condition 2.4.1(∞), and
that if 1 ≤ p < q, then

Conditions 2.4.1(q) =⇒ Conditions 2.4.1(p).

2. Notice that conditions 2.4.1(p) with p ∈ [1,∞) do not imply that the
trace norm of the weak spectral density operators are bounded.

3. If X t satisfies Conditions 2.4.1(p), with p ≥ 1, then by Hölder’s in-
equality, the nuclear norm of the lag-t autocovariance operators is
uniformly bounded:

sup
t∈Z

|||Rt |||1 ≤
∫ π

−π
|||Fω|||1dω<∞.

We shall now give the functional version of the Cramér representation.
For this purpose, let us denote byH the space of all random elements of
H with finite second moment, i.e.

H= L2(Ω, H ,P) = {
Y random element of H : E‖Y ‖2 <∞}

.

Let us define 〈Y , Z 〉H = E〈Y , Z 〉 for Y , Z ∈ H, and ‖Y ‖H = √〈Y ,Y 〉H the
corresponding norm. This defines actually a scalar product on H (after
identification of random elements that are almost surely equal), and
(H,〈·, ·〉H) is in fact a Hilbert space (in particular it is complete).

Theorem 2.4.3 (Functional Cramér Representation).
Assume Conditions 2.4.1(p) hold for some p ∈ (1,∞]. Then X t admits the
representation

X t =
∫ π

−π
e iωt d Zω, a.s., (2.4.2)

where for fixed ω, Zω is a random element of H, defined by

Zω = lim
T→∞

∑
|t |<T

(
1+ |t |

T

)
gω(t )X−t , inH, (2.4.3)

where

gω(t ) = (2π)−1
∫ ω

−π
e−iαt dα.

The random process [−π,π] 3ω 7→ Zω ∈H satisfies

1. Z−π = 0
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2. Zπ = X0

3. For every α,β ∈ [−π,π],

Zα−Zβ = Z−β−Z−α (2.4.4)

and has a covariance structure given by

E
[

Zα⊗2 Zβ
]= ∫ min(α,β)

−π
Fωdω. (2.4.5)

In particular, Zω has orthogonal increments:

E
〈

Zω1 −Zω2 , Zω3 −Zω4

〉= 0, if ω1 >ω2 ≥ω3 >ω4. (2.4.6)

The representation (2.4.2) is called the Cramér representation of X t .

Remark 2.4.4. If Condition 2.4.1(∞) holds, then (2.4.3) simplifies to

Zω = (2π)−1 lim
T→∞

∑
|t |<T

X−t

∫ ω

−π
e−iαt dα, inH. (2.4.7)

Furthermore, the stochastic integral (2.4.2) can be understood as a
Riemann-Stieltjes limit, in the sense that

E

∥∥∥∥∥X t −
J∑

j=1
e iω j t (Zω j+1 −Zω j )

∥∥∥∥∥
2

→ 0, as J →∞, (2.4.8)

where −π=ω1 < ·· · <ωJ+1 =π and max j=1,...,J |ω j+1 −ω j |→ 0 as J →∞.

This last remark formalizes the idea of decomposing X t into distinct fre-
quencies: setting X t (ω j ) = e iω j t (Zω j+1 −Zω j ), we have

X t ≈
J∑

j=1
X t (ω j ),

where the approximation error can be made as small as one wishes, with
respect to the ‖·‖H norm.

Remark 2.4.5 (Towards the Cramér–Karhunen–Loève Decomposition).
Let us denote by

Fω =
∞∑

n=1
µn(ω)ϕωn ⊗2ϕ

ω
n

the singular value decomposition of the spectral density operators, for
almost every ω ∈ [−π,π]. If the spectral density operator Fω is strictly
positive-definite almost everywhere, we may abuse notation and write

X t =
∫ π

−π
e iωt

( ∞∑
n=1

ϕωn ⊗2ϕ
ω
n

)
d Zω, (2.4.9)
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where {Zω} is as in Theorem 2.4.3. Provided we can exchange the sum and
the integral, we have

X t =
∞∑

n=1

∫ π

−π
e iωt (ϕωn ⊗2ϕ

ω
n )dω. (2.4.10)

Although the representation in Remark 2.4.5 is a mere reformulation of
Theorem 2.4.3, and is not rigorous, it sets the scene for the question of the
nature of the approximation of {X t } that might arise if we where able to
truncate the identity operator

∑∞
n=1ϕ

ω
n ⊗2ϕ

ω
n to have finite rank

X ∗
t :=

∫ π

−π
e iωt

(
K∑

n=1
ϕωn ⊗2ϕ

ω
n

)
d Zω, (2.4.11)

i.e. to consider the limiting behaviour of E‖X t − X ∗
t ‖2 as K → ∞ (See

Theorem 2.8.6). It is such truncations (and their approximation error)
that are at the essence of representations of the Karhunen–Loève type.
We develop in Section 2.5 the formalism to make sense of an integral of
the form (2.4.11) (it is not a priori clear that it is well-defined, since now
the operator in the integrand depends on ω), and prove in Section 2.8
that it provides an optimal rank K approximation of the original process,
yielding a harmonic principal component analysis of the process X t (in
fact, we will not require that Fω be strictly positive).

Remark 2.4.6.
Note that the action of the operator

∑∞
n=1ϕ

ω
n ⊗2ϕ

ω
n on an element g ∈

L2 ([0,1],C) is described by[ ∞∑
n=1

ϕωn ⊗2ϕ
ω
n

]
g =

∞∑
n=1

〈
g ,ϕωn

〉
ϕωn .

Therefore, we may formally interpret the Cramér–Karhunen–Loève repre-
sentation as

X t =
∫ π

−π
e iωt

∞∑
n=1

〈
d Zω,ϕωn

〉
ϕωn ,

a form which emphasizes the doubly spectral decomposition of {X t } as
discussed in Section 2.2.

2.5 Linear Filtering,

Stochastic Integrals of Operator Valued Functions

Notice that if a ∈ S∞(H), we can show that aX t =
∫ π
−π ae iωt d Zω, using

(2.4.8). If we define a new FTS (Yt )t∈Z by linear filtering of X t , i.e.

Yt =
∑
s∈Z

as X t−s , t ∈Z,
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it would be useful to have a Cramér representation for Yt . Formally, we
would like to do ∑

s
as X t−s =

∑
s

as

∫ π

−π
e iω(t−s)d Zω

=
∫ π

−π

(∑
s

ase−iωs
)

e iωt d Zω.

This, together with Remark 2.4.5, motivates giving a meaning to stochastic
integrals of the form ∫ π

−π
A(ω)d Zω, (2.5.1)

where A : [−π,π] →S∞(H). In fact, if F· ∈ Lp ([−π,π],S1(H)), we will be
able to give a meaning to this stochastic integral for all A ∈H, where H is
the completion of L2q ([−π,π],S∞(H)) under the norm ‖·‖H =√〈·, ·〉H,

〈A,B〉H =
∫ π

−π
Tr

(
A(ω)FωB †(ω)

)
dω, ∀A,B ∈H.

and q ≥ 1 such that p−1 +q−1 = 1. We note in particular that by Hölder’s
inequality,

L2q ([−π,π],S∞(H)) ⊂H.

For a sequence (An)n≥1 ⊂H, and A ∈H, we will say that

lim
n→∞ An = A, in H,

if limn→∞ ‖An − A‖H = 0.

More details about the construction of the space H can be found in Sec-
tion 2.6. The definition of the stochastic integral (2.5.1) is made precise
by the following Theorem.

Theorem 2.5.1. For any A ∈H, there exists a (not necessarily unique) tri-
angular array (aT,t )|t |<T ⊂S∞(H),T = 1,2, . . . such that

lim
T→∞

∥∥∥∥∥A− ∑
|t |<T

aT,t e−t

∥∥∥∥∥
H

= 0, (2.5.2)

where es : R→ C is defined by es(ω) = exp(isω). For any such triangular
array, we define

∫ π
−π A(ω)d Zω ∈H to be the unique element satisfying

E

∥∥∥∥∥
∫ π

−π
A(ω)d Zω−

∑
|t |<T

aT,t X−t

∥∥∥∥∥
2

→ 0, T →∞. (2.5.3)

In particular, the stochastic integral
∫ π
−π A(ω)d Zω does not depend on the

choice of array that satisfies (2.5.2).
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Furthermore, we have∫ π

−π
A(ω)d Zω =

∫ π

−π
A(−ω)d Zω, a.s., (2.5.4)

E
∫ π
−π A(ω)d Zω = 0, and the covariance structure of the stochastic integral

is given by

E

[∫ π

−π
A(ω)d Zω⊗2

∫ π

−π
B(ω)d Zω

]
=

∫ π

−π
A(ω)FωB †(ω)dω, A,B ∈H.

(2.5.5)

Remark 2.5.2.
Notice that equation (2.5.5) implies that

E

〈∫ π

−π
A(ω)d Zω,

∫ π

−π
B(ω)d Zω

〉
=

∫ π

−π
Tr

(
A(ω)FωB †(ω)

)
dω, ∀A,B ∈H,

(2.5.6)
or put more simply,

〈∫ π
−π A(ω)d Zω,

∫ π
−πB(ω)d Zω

〉
H
= 〈A,B〉H. This identity

is closely related to the proof of the Theorem, which is based on the construc-
tion of a unitary transformation between the spaces H and H. Therefore,
equation (2.5.6) will be called the isometry property. The unitary transfor-
mations betweenH and H are denoted by

H
T // H
I
oo ,

I (A) = ∫ π
−π A(ω)d Zω, T

(∫ π
−π A(ω)d Zω

) = A, T ◦I = IdH, and I ◦T =
IdH. Details of the construction of these mappings can be found in Sec-
tion 2.6.

Understanding Theorem 2.5.1 is not straightforward, due to its generality.
Indeed, it is possible to choose a triangular array (aT,t )|t |<T ⊂S∞(H ) such
that (2.5.2) holds, but with

∣∣∣∣∣∣aT,0
∣∣∣∣∣∣∞ → ∞, and with the limit function

A ∈H not belonging to L2q ([−π,π],S∞(H)). However, the restriction of
the stochastic integral to L2q ([−π,π],S∞(H)) can be viewed as a Cesaro-
sum of a truncated Fourier series:

Theorem 2.5.3. Let X t satisfy Conditions 2.4.1(p) for some p ∈ (1,∞], and
let q ∈ [1,∞) satisfy p−1 + q−1 = 1 (q = 1 if p = ∞). Then for any A ∈
L2q ([−π,π],S∞(H)) , we define the stochastic integral

∫ π
−π A(ω)d Zω to be

the unique (a.s.) random element ofH satisfying∫ π

−π
A(ω)d Zω = lim

T→∞
∑

|t |<T

(
1− |t |

T

)
at X−t , in H. (2.5.7)

where

at = (2π)−1
∫ π

−π
e iωt A(ω)dω ∈S∞(H), t ∈Z. (2.5.8)
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If
∑

t∈Z |||at |||∞ <∞, then∫ π

−π
A(ω)d Zω = lim

T→∞
∑

|t |<T
at X−t , in H (2.5.9)

Remark 2.5.4.
If Condition 2.4.1(∞) holds, and ifω 7→ A(ω) is càdlàg with respect to |||·|||∞,
with a finite number of jumps, then the stochastic integral (2.5.1) can be
understood as a Riemann-Stieltjes limit, in the sense that for every ε> 0,
there exists a partition P = {ω1, . . . ,ωk } of [−π,π] such that for any finer
partition P ′ = {

ω′
1, . . . ,ω′

K

}
of [−π,π] (i.e. P ⊂ P ′), and every choice of points

λi ∈ [ω′
i ,ω′

i+1], we have

E

∥∥∥∥∥
∫ π

−π
A(ω)d Zω−

J∑
j=1

A(λ j )(Zω′
j+1

−Zω′
j
)

∥∥∥∥∥
2

< ε2. (2.5.10)

We now have the tools for stating a result about linear filters of a second-
order stationary FTS.

Theorem 2.5.5. Let X t satisfy Conditions 2.4.1(p) for some p ∈ (1,∞], with
Cramér representation

X t =
∫ π

−π
e iωt d Z X

ω , (2.5.11)

and spectral density operators F X
ω .

Let (aT,t )|t |<T ⊂S∞(H),T = 1,2, . . . be a triangular array such that

A(ω) = lim
T→∞

∑
|s|<T

e−iωs aT,s , in H, (2.5.12)

for some A ∈H (see Remark 2.5.6 below).
Then, Yt = limT→∞

∑
|s|<T aT,s X t−s converges inH, is second-order station-

ary with mean zero, and

1. Yt admits the representation

Yt =
∫ π

−π
e iωt A(ω)d Z X

ω ,

where A(ω) = limT→∞
∑

|s|<T e−iωs aT,s in H.

2. The weak spectral density operators of Yt are given by

F Y
ω = A(ω)F X

ω A†(ω), ω ∈ [−π,π], (2.5.13)

F Y· ∈ L1([−π,π],S1(H)), and the inversion formula holds for Yt ,

RY
t = E [Yt ⊗2 Y0] =

∫ π

−π
F Y
ω e iωt dω, ∀t ∈Z.
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3. If for some q ≥ p/(p −1), or q =∞,

lim
T→∞

∑
|t |<T

e−iωn aT,t = A(ω), in L2q ([−π,π],S∞(H)), (2.5.14)

then F Y
ω ∈ Lr ([−π,π],S1(H)), where r−1 = p−1 +q−1.

Remark 2.5.6.

1. A condition equivalent to (2.5.12) is that, for every ε> 0, there exists
an N > 0 such that for all T ′ ≥ T > N ,∑

|s|,|u|<T ′
Tr

(
(aT ′,s −aT,s)RX

u−s(aT ′,u −aT,u)†
)
< ε, (2.5.15)

where we let aT,s = 0 if s ≥ T . The sum on the left-hand side is
guaranteed to be real and non-negative.

2. If the triangular array is actually just a sequence (at )t∈Z, then condi-
tion (2.5.15) simplifies to∑

T≤|s|,|u|<T ′
Tr

(
asR

X
u−s a†

u

)
< ε. (2.5.16)

A sufficient condition for this to hold is∑
s∈Z

|||as |||∞ <∞, (2.5.17)

which implies that (2.5.14) holds for q =∞.

3. If X t is m-correlated, i.e. RX
t = 0 for |t | > m, then a sufficient condi-

tion for (2.5.16) is ∑
s∈Z

|||as |||2∞ <∞. (2.5.18)

4. If Conditions 2.3.3 and 2.3.4 hold, and the triangular array is just a
sequence (at )t∈Z satisfying (2.5.17), then

∑
t∈Z

∣∣∣∣∣∣RY
t

∣∣∣∣∣∣∞ <∞.

This result tells us that any linear filtering of the X t with a filter satisfying
(2.5.14) with q > p/(p −1) will fulfill Conditions 2.4.1(r ) with r > 1, and
admits therefore its own Cramér representation

Yt =
∫ π

−π
e iωt d Z Y

ω .

We can therefore say formally that

d Z Y
ω = A(ω)d Z X

ω .
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2.6 Proofs of Sections 2.4 and 2.5

In this section, we shall prove the results of Sections 2.4 and 2.5. We
assume throughout that X t satisfies Conditions 2.4.1(p), for some p ∈
(1,∞], and that q is conjugate to p, i.e. p−1+q−1 = 1. Notice that q ∈ [1,∞).
The letter c shall denote the constant

c =
(∫ π

−π
|||Fω|||p1 dω

)1/p

<∞.

2.6.1 Definition of the Spaces Involved

We define the following subspace ofH,

M0 =
{

n∑
l=−n

al X−l : al ∈S∞(H) for all |l | ≤ n;n = 1,2, . . .

}
, (2.6.1)

which consists of all the finite linear filterings of the time series X t with
bounded operators. LetM⊂H be the completion ofM0 under the norm
‖·‖H, and L be the Banach space L2q ([−π,π],S∞(H)), with norm

‖A‖L =
(∫ π

−π
|||A(ω)|||2q

∞ dω

)1/2q

, A ∈L. (2.6.2)

We also define the mapping C0 :L×L→ L1([−π,π],S1(H)) by

C0(A,B)(ω) = A(ω)FωB †(ω), A,B ∈L; ω ∈ [−π,π]. (2.6.3)

The following Lemma gives some properties of C0.

Lemma 2.6.1.
The mapping C0 defined by (2.6.3) is well defined. It satisfies, for all
A1, A2,B ∈L, a ∈S∞(H), the following properties:

1. C0(A1 +a A2,B) =C0(A1,B)+aC0(A2,B),

2. C0(A1,B)† =C0(B , A1),

3. Tr(C0(A1, A1)) ∈ L1([−π,π],R), and is almost everywhere non-negative.

Proof. The fact that C0(A,B) ∈ L1([−π,π],S1(H)) if A,B ∈L follows from
Proposition B.0.14, and since the other statements are shown easily, their
proof is omitted.

This Lemma essentially implies thatC0(A,B), behaves like a cross-covariance
operator of A,B ∈ L: for each ω ∈ [−π,π], C0(A,B)(ω) is like a cross-
covariance operator of A(ω) and B(ω). By taking the integral of the trace
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of C0, we can define a semi-scalar product on L:

〈A,B〉H :=
∫ π

−π
Tr(C0(A,B))(ω)dω=

∫ π

−π
Tr

(
A(ω)FωB †(ω)

)
dω, A,B ∈L.

(2.6.4)
We denote its corresponding norm by ‖A‖2

H = 〈A, A〉H.

Lemma 2.6.2.
The norm ‖·‖L is stronger that ‖·‖H, i.e. any sequence (An)n≥1 ⊂ L con-
verging in ‖·‖L converges also in ‖·‖H; but the converse does not always
hold.

Proof. The first statement follows from Hölder’s inequality:

‖A‖2
H ≤

∫ π

−π
|||A(ω)|||2∞|||Fω|||1dω

≤
(∫ π

−π
|||A(ω)|||2q

∞ dω

)1/q (∫ π

−π
|||Fω|||p1 dω

)1/p

≤ c‖A‖2
L.

The second statement follows from the fact that Fω is trace-class.

Definition 2.6.3. We denote byH the completion ofLwith respect to ‖·‖H—
constructed by taking the equivalence classes of Cauchy sequences whose
distance converge to zero.

Lemma 2.6.4. (H,〈·, ·〉H) is a Hilbert space, L⊂H, and any dense subset of
(L,‖·‖L) is also dense in (H,‖·‖H).

Proof. The fact that H is a Hilbert space and L⊂H follows from the con-
struction of H and Lemma 2.6.2. let {Bi : i ∈ I } ⊂L be a dense subset (with
respect to ‖·‖L). If A ∈H, then for any ε> 0, there is an Aε ∈L such that
‖A− Aε‖H ≤ ε/2. Since Aε ∈ L, there is a j ∈ I such that

∥∥Aε−B j
∥∥
L ≤

ε/(2
p

c). The triangle inequality now yields∥∥A−B j
∥∥
H ≤ ‖A− Aε‖H+ c1/2

∥∥Aε−B j
∥∥
H ≤ ε.

Notice that
∫

Tr(C0(A,B)(ω))dω≤ ‖A‖H‖B‖H by the Cauchy-Schwarz in-
equality. In fact, we also have that the mapping C0 is continuous with
respect to the norm ‖·‖H:

Proposition 2.6.5.
For all A,B ∈L, ∫ π

−π
|||C0(A,B)(ω)|||1dω≤ ‖A‖H‖B‖H (2.6.5)
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Proof. Using Hölder’s inequality, we get∫ π

−π
|||C0(A,B)(ω)|||1dω≤

∫ π

−π

∣∣∣∣∣∣∣∣∣A(ω)FωB †(ω)
∣∣∣∣∣∣∣∣∣

1
dω

=
∫ π

−π

∣∣∣∣∣∣∣∣∣A(ω)F 1/2
ω (B(ω)F 1/2

ω )†
∣∣∣∣∣∣∣∣∣

1
dω

≤
∫ π

−π

∣∣∣∣∣∣A(ω)F 1/2
ω

∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣(B(ω)F 1/2
ω )†

∣∣∣∣∣∣∣∣∣
2

dω

≤
(∫ π

−π

∣∣∣∣∣∣A(ω)F 1/2
ω

∣∣∣∣∣∣2
2dω

∫ π

−π

∣∣∣∣∣∣B(ω)F 1/2
ω

∣∣∣∣∣∣2
2dω

)1/2

=
(∫ π

−π

∣∣∣∣∣∣∣∣∣A(ω)FωA†(ω)
∣∣∣∣∣∣∣∣∣

1
dω

∫ π

−π

∣∣∣∣∣∣∣∣∣B(ω)FωB †(ω)
∣∣∣∣∣∣∣∣∣

1
dω

)1/2

= ‖A‖H‖B‖H.

We can now extend the domain of the mapping C0 to a mapping C :H×
H → L1([−π,π],S1(H)) by continuity: if An → A ∈ H and Bn → B ∈ H,
where (An), (Bn) ⊂L, we define

C(A,B) = lim
n→∞C0(An ,Bn), in L1([−π,π],S1(H)). (2.6.6)

Proposition 2.6.6.
The mapping C : H×H → L1([−π,π],S1(H)) is well defined. Further-
more, it is continuous, i.e. if (An), (Bn) ⊂H such that ‖An − A‖H → 0 and
‖Bn −B‖H → 0 as n →∞, for some A,B ∈H, then

|||C(An ,Bn)−C(A,B)|||1 → 0, n →∞,

Furthermore, the properties of C0 extend to C: for all A1, A2,B ∈ H, a ∈
S∞(H),

1. C(A1 +a A2,B) =C(A1,B)+aC(A2,B),

2. C(A1,B)† =C(B , A1),

3. C(A1, A1) is a non-negative operator.

Proof. The extension is well defined by the linearity and continuity C0.
Indeed,

|||C0(Am ,Bm)−C0(An ,Bn)|||1 = |||C0(Am − An ,Bm)+C0(An ,Bm −Bn)|||1
≤ |||C0(Am − An ,Bm)|||1 +|||C0(An ,Bm −Bn)|||1.

Therefore, by Proposition 2.6.5,∫ π

−π
|||C0(Am ,Bm)(ω)−C0(An ,Bn)(ω)|||1dω≤ ‖Am − An‖H‖Bm‖H+‖Bm −Bn‖H‖An‖H.
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Since (An), (Bn) are converging in H, they are also Cauchy sequences,
which implies that (C0(An ,Bn))n≥1 is also a Cauchy sequence in L1([−π,π],S1(H )).
The uniqueness of the limit, and the continuity of C0 follow from the same
kind of argument. The proof of the other properties follow directly from
Lemma 2.6.1 and the definition of C.

2.6.2 Isometry BetweenM and H

Recall that en ∈ L is the function defined by en(ω) = e iωn , for n ∈ Z. We
now define a mapping T :M0 →H by linear extension of the mappings
Xn 7→ en , or explicitly

T

( ∑
|n|<N

an X−n

)
= ∑

|n|<N
ane−n , (2.6.7)

where (ane−n)(ω) = e−n(ω)an . The properties of the mapping T are given
in the following proposition.

Proposition 2.6.7.
The mapping T :M0 →H be defined by (2.6.7) has the following properties:

1. T is S∞(H)-linear:

T (aY1 +Y2) = aT (Y1)+T (Y2), Y1,Y2 ∈M0, a ∈S∞(H). (2.6.8)

2. The mapping T preserves the second-order structure, i.e.

E [Y1⊗2 Y2] =
∫ π

−π
C(T (Y1),T (Y2))(ω)dω, ∀Y1,Y2 ∈M0. (2.6.9)

In particular, the mapping T :M0 →H is an isomorphism:

〈T (Y1),T (Y1)〉H = 〈Y1,Y2〉H, ∀Y1,Y2 ∈M0. (2.6.10)

Proof. From its construction, T is S∞(H)-linear. Now take Y1,Y2 ∈M0.
Without loss of generality,

Y j =
∑

|n|<N
a j ,n X−n , j = 1,2.

Using the fact that bounded operators commute with the expectation and
with Bochner integrals, and using the inversion formula,

E [Y1⊗2 Y2] = E

[( ∑
|n|<N

a1,n X−n

)
⊗2

( ∑
|m|<N

a1,m X−m

)]
= ∑

|n|,|m|<N
anRm−nb†

m

= ∑
|n|,|m|<N

an

[∫ π

−π
Fωe iω(m−n)dω

]
b†

m
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=
∫ π

−π

( ∑
|n|<N

a1,ne−iωn

)
Fω

( ∑
|m|<N

a2,me−iωm

)†

dω

=
∫ π

−π
C(T (Y1),T (Y2))(ω)dω.

Taking the trace yields 〈Y1,Y2〉H = 〈T (Y1),T (Y2)〉H

Since the mapping T is an isometry betweenM0 andH, it can be extended
by continuity to a mapping T : M→ H. More precisely, if Y ∈M, and
(Yn) ⊂M0 is a sequence converging to Y , we define

T (Y ) = lim
n→∞Yn , in H. (2.6.11)

Proposition 2.6.8.

The mapping T : M→H defined by (2.6.11) is well-defined, linear, and
surjective. Therefore it is an isometric isomorphism betweenM and H, has
the following properties

T (aY1 +Y2) = aT (Y1)+T (Y2), Y1,Y2 ∈M, a ∈S∞(H),

(2.6.12)

E [Y1⊗2 Y2] =
∫ π

−π
C(T (Y1),T (Y2))(ω)dω, Y1,Y2 ∈M.

(2.6.13)

〈Y1,Y2〉H = 〈T (Y1),T (Y1)〉H, Y1,Y2 ∈M.

(2.6.14)

Moreover, T admits an inverse T −1 :H→M that is also a isometry.

Proof. Let us verify that T is well defined. Let (Y1,n), (Y2,n) ⊂M be two
sequences converging to Y ∈M, and define y j = limn→∞T (Y j ,n), j = 1,2.
Then y1 = y2 by the isometry property of T :∥∥y1 − y2

∥∥
H = lim

n

∥∥T (Y1,n)−T (Y2,n)
∥∥
H = lim

n

∥∥Y1,n −Y2,n
∥∥
H
= 0.

The proof of the linearity and of property (2.6.12) is shown directly by
taking convergent sequences inM0, and is omitted.

Since the subspace T (M0) is dense in L (by Lemma B.0.13, since 2q 6=∞),
Lemma 2.6.4 implies that it is also dense in H. Therefore T (M) =H and
T is an isometric isomorphism, and admits an inverse T −1 : H → M

that is also linear and isometric. Furthermore, Lemma C.1.2 and Proposi-
tion 2.6.6 imply properties (2.6.13) and (2.6.14).
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2.6.3 The Process Zω and the Stochastic Integral

We now define Zω =T −1(1[−π,ω)I ), for all ω ∈ (−π,π], and Z−π = 0. Notice
that Zπ = X0, and that by the isometry property (2.6.13),

E
[
(aZα)⊗2(bZβ)

]= ∫ min(α,β)

−π
aFωb†dω. (2.6.15)

In particular, setting a = b = I and taking the trace of this expression, we
see that 〈

Zα, Zβ
〉
H
=

∫ min(α,β)

−π
Tr(Fω)dω,

i.e. ω 7→ Zω is an orthogonal increment process. We now define the
integral with respect to this orthogonal process. Let D ⊂H be the subspace
of càdlàg step functions, i.e. functions of the form

A =
N∑

n=1
an1[ωn ,ωn+1), (2.6.16)

where −π = ω1 < ω2 < ·· · < ωN+1 = π and an ∈ S∞(H) for n = 1, . . . , N ,
and define the mapping I : D →M by

I

(
N∑

n=1
an1[ωn ,ωn+1)

)
=

N∑
n=1

an(Zωn+1 −Zωn ). (2.6.17)

Notice that I is a linear mapping, and that

T (I (a1[α,β))) =T (a(Zβ−Zα)) = aT (Zβ−Zα) = a1[α,β), a ∈S∞(H).
(2.6.18)

Therefore I =T −1 on D , and is an isometry on D . Since D is dense in H
(by Lemma B.0.13 and Lemma 2.6.4), we can extend I to H by continuity.
We denote the extension by I :H→H, and in fact I =T −1. This gives a
meaning to the stochastic integral∫ π

−π
A(ω)d Zω =I (A), (2.6.19)

for all A ∈H.

2.6.4 Proof of the Stated Results

Proof of Theorem 2.4.3 on page 30. We have

X t =I (T (X t )) =I (et ) =
∫ π

−π
e iωt d Zω, (2.6.20)

which proves (2.4.2). The proof of (2.4.3) is a consequence of Theo-
rem 2.5.3, which is proved below, independently from Theorem (2.4.3). To
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prove (2.4.4), recall that

gω(n) = (2π)−1
∫ ω

−π
e iαndα= (2π)−1

∫ π

−π
1[−π,ω)e

iαndα,

and by (2.4.3),

Zβ−Zα = lim
T→∞

∑
|t |<T

(1−|t |/T )
(
gβ(n)− gα(n)

)
X−n .

Now

gβ(n)− gα(n) =
∫ β

α
e iωndω=

∫ −α

−β
e iλndλ= g−α(n)− g−β(n),

where the change of variable λ =−ω was used. Therefore, since X t is a
real-valued series,

Zβ−Zα = lim
T→∞

∑
|t |<T

(1−|t |/T )
(
gβ(n)− gα(n)

)
X−n

= lim
T→∞

∑
|t |<T

(1−|t |/T )
(
gβ(n)− gα(n)

)
X−n

= Z−α−Z−β.

Equation (2.4.5) follows directly from the definition of Zω and the isometry
property (2.6.13), and (2.4.6) follows from (2.4.5).

Proof of Remark 2.4.4. We only prove (2.4.7), because (2.4.8) is proved is
a similar fashion to Remark 2.5.4, which is proved independently of this
result. Recall that

gω(n) = (2π)−1
∫ ω

−π
e iαndα= (2π)−1

∫ π

−π
1[−π,ω)e

iαndα,

and let us introduce some notation: we define

Zω,N = ∑
|n|<N

gω(n)X−n ,

and

fω,N =
(

1[−π,ω) −
∑

|n|<N
gω(n)e−n

)
,

where en(α) = e iαn . We get, using the isometry property (2.5.6), and
Lemma 2.6.2,∥∥Zω−Zω,N

∥∥2
H
= ∥∥T (Zω)−T (Zω,N )

∥∥2
H

= ∥∥ fω,N I
∥∥2
H

≤ c
∥∥ fω,N I

∥∥2
L
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= c
∫ π

−π

∣∣∣∣∣∣ fω,N (α)I
∣∣∣∣∣∣2

∞dα

= c
∫ π

−π

∣∣ fω,N (α)
∣∣2 dα→ 0, N →∞,

where the convergence to zero comes from the fact that fω,N is the differ-
ence between 1[−π,ω) and its truncated Fourier series.

Proof of Theorem 2.5.1. Since the trigonometric polynomials∑
|n|<N

ane−n , an ∈S∞(H), N ∈N, (2.6.21)

are dense in L, and therefore also in H (see Lemmas B.0.13 and 2.6.4), any
A ∈H can be written as a limit A = limN→∞ AN , where AN can be taken
to be (without loss of generality) to be of the form given in (2.6.21). This
proves (2.5.2). Now (2.5.3), as well as the uniqueness of the limit, follow
directly from the isometry property, and (2.5.5) corresponds to (2.6.13),
which has already been proved.

We now turn to the proof of (2.5.4). Let Y1 = ∫ π
−π A(ω)d Zω, and Y2 =∫ π

−π A(−ω)d Zω. We will show that
∥∥∥Y1 −Y2

∥∥∥
H
= 0. Fix ε> 0. Using (2.5.2),

we take a sequence (at ) ⊂S∞(H) such that∥∥Y1 −Y ′∥∥
H
< ε/2,

where Y ′ =∑
|t |<T at X−t . By the triangle inequality,∥∥∥Y1 −Y2

∥∥∥
H
≤

∥∥∥Y1 −Y ′
∥∥∥
H
+

∥∥∥Y ′−Y2

∥∥∥
H

.

We know that the first term is bounded by ε/2, so let us turn to the second
term. By the isometry property,∥∥∥Y ′−Y2

∥∥∥
H
=

∥∥∥T
(
Y ′

)
−T (Y2)

∥∥∥
H

.

Now notice that

T
(
Y ′

)
(ω) = ∑

|t |<T
at e−t (ω) = ∑

|t |<T
at e−t (−ω) =T (Y ′)(−ω).

Thus (2.5.4) is proved provided we show that
∥∥Ac

∥∥
H = ‖A‖H for all A ∈H,

where Ac(ω) = A(−ω). We have

∥∥Ac
∥∥2
H =

∫ π

−π
Tr

(
Ac(ω)Fω(Ac(ω)†

)
dω

=
∫ π

−π
Tr

(
A(−ω)FωA(−ω)

†
)
dω

=
∫ π

−π
Tr

(
A(−ω)F−ωA(−ω)†

)
dω (by Proposition 2.8.8)
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=
∫ π

−π
Tr

(
A(ω)FωA(ω)†

)
dω (by a change of variables)

=
∫ π

−π
Tr

(
A(ω)FωA(ω)†

)
dω (by direct calculation)

= ‖A‖2
H.

This completes the proof.

Proof of Theorem 2.5.3. The isometry property and Lemma 2.6.2 yield

E

∥∥∥∥∥
∫ π

−π
A(ω)d Zω−

∑
|t |<T

(
1− |t |

T

)
at X−t

∥∥∥∥∥
2

=
∥∥∥∥∥A− ∑

|t |<T

(
1− |t |

T

)
at e−t

∥∥∥∥∥
2

H

≤ c

∥∥∥∥∥A− ∑
|t |<T

(
1− |t |

T

)
at e−t

∥∥∥∥∥
2

L

Noticing that
∑

|t |<T (1−|t |/T ) at e−t = KT ∗A, where KT is the Fejér kernel
(B.0.14), and recalling that L = L2q ([−π,π],S∞(H)), where 2q ∈ [1,∞),
Proposition B.0.16 yields (2.5.7). To show (2.5.9), we need to show that

lim
T→∞

∥∥AT − A′
T

∥∥
H
= 0,

where AT =∑
|t |<T

(
1− |t |

T

)
at X−t and A′

T =∑
|t |<T at X−t , and then the re-

sult will follow from (2.5.7) and the triangle inequality. Direct calculations
yield

E
∥∥AT − A′

T

∥∥2 = ∑
|s|,|t |<T

|s||t |
T 2 Tr

(
atRs−t a†

s

)
≤ sup

u
|||Ru |||1

∑
|s|,|t |<T

|s||t |
T 2

|||at |||∞|||as |||∞

= sup
u

|||Ru |||1
( ∑
|t |<T

|t |
T

|||at |||∞
)2

.

Since the nuclear norm of the autocovariance operators are uniformly
bounded (Remark 2.4.2), and

∑
t∈Z |||at |||∞ <∞ by assumption, the domi-

nated convergence theorem tells us that the right-hand side converges to
zero as T →∞.

Proof of Remark 2.5.4. Let A :ω→S∞(H) be càdlàg with a finite number
of jumps, say at Ξ= {ξ1, . . . ,ξm}. This implies that A is uniformly continu-
ous within each interval not containing a jump, or possibly having a ξ j

at one of its extremities. More precisely, for all ε> 0, there is a δ> 0 such
that

0 <ω−ω′ < δ & (ω′,ω)∩Ξ=; =⇒ ∣∣∣∣∣∣A(ω′)− A(ω)
∣∣∣∣∣∣∞ < ε.

(2.6.22)
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Now for a ε> 0 fixed, we choose δ> 0 such that (2.6.22) holds for

(ε′)2 = ε2/

[
2π sup

ω∈[−π,π]
|||Fω|||1

]
,

(recall that this supremum is finite since Condition 2.4.1(∞) holds). We
choose P = {ω1, . . . ,ωK } to be any partition finer than Ξ, satisfying

max
i=1,...,K−1

ωi+1 −ωi < δ.

Now for any partition P ′ =
{
ω′

1, . . . ,ω′
J+1

}
finer than P , and any λ j ∈

[ω′
j ,ω′

j+1], if we let SP ′ =∑J
j=1 A(λ j )1[ω′

j ,ω′
j+1), we will have

∥∥∥∥∥
∫ π

−π
A(ω)d Zω−

J∑
j=1

A(λ j )(Zω j+1 −Zω j )

∥∥∥∥∥
2

H

= ‖I (A)−I (SP ′)‖H
= ‖A−SP ′‖H
=

∫ π

−π

∣∣∣∣∣∣∣∣∣(A(ω)−SP ′(ω))Fω(A(ω)−SP ′(ω))†
∣∣∣∣∣∣∣∣∣

1
dω

≤ c
∫ π

−π
|||A(ω)−SP ′(ω)|||2∞dω

where c = supω∈[−π,π] |||Fω|||1,

= c
J∑

j=1

∫ ω′
j+1

ω′
j

∣∣∣∣∣∣A(ω)− A(λ j )
∣∣∣∣∣∣2

∞dω

using (2.6.22) and the fact that P ′ ⊃ P ⊃Ξ,

≤ c
J∑

j=1
(ε′)2(ω′

j+1 −ω′
j )

= 2πc · (ε′)2

= ε2,

which completes the proof.

Proof of Theorem 2.5.5. Let us define AT =∑
|s|<T e−s aT,s ∈H, and notice

that by assumption,

‖A− AT ‖H → 0, T →∞,

for some A ∈ H. In particular, this implies that (AT )T≥1 is a Cauchy se-
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quence in H. Let YT,t =∑
|s|<T aT,s X t−s , and notice that

T (YT,t ) = ∑
|s|<T

aT,set−s = et AT , t ∈Z.

By the isometry property,∥∥YT ′,t −YT,t
∥∥2
H
= ∥∥T (YT ′,t )−T (YT,t )

∥∥2
H

= ‖et (AT ′ − AT )‖2
H

=
∫ π

−π
Tr

(
[e iωt (AT ′(ω)− AT (ω))]Fω[e iωt (AT ′(ω)− AT (ω))]†

)
dω

=
∫ π

−π
Tr

(
(AT ′(ω)− AT (ω))Fω(AT ′(ω)− AT (ω))†

)
dω

= ‖AT ′ − AT ‖2
H.

Therefore (YT,t )T≥1 is a Cauchy sequence inM0, and converges to some
Yt ∈M. Furthermore,

Yt =I (T (Yt )) =I (T (lim
T

YT,t )

=I (lim
T

T (YT,t ))

=I (lim
T

et AT )

=I (et A)

=
∫ π

−π
e iωt A(ω)d Zω,

for all t ∈Z. Hence by Theorem 2.5.1, Yt has mean zero,

E [Yt ⊗2 Ys] = E

[∫ π

−π
e iωt A(ω)dω⊗2

∫ π

−π
e iωs A(ω)dω

]
=

∫ π

−π
e iω(t−s) A(ω)FωA†(ω)dω,

hence Yt is second-order stationary, and its autocovariance operators
satisfy

RY
t = E [Yt ⊗2 Y0] =

∫ π

−π
e iωt A(ω)FωA†(ω)dω, t ∈Z. (2.6.23)

Therefore the weak spectral density operators of Yt are given by

F Y
ω = A(ω)F X

ω A(ω),

and F Y· =C(A, A) ∈ L1([−π,π],S1(H)) by Proposition 2.6.6.

Now suppose that AT → A in L2q ([−π,π],S∞(H)) for some q ≥ p/(p −
1). Recall that F· ∈ Lp ([−π,π],S1(H)), and let r = (p−1 +q−1)−1. Notice
that r ≥ 1, and therefore, by Hölder’s inequality (similarly to the proof of
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Lemma 2.6.2),∫ π

−π

∣∣∣∣∣∣F Y
ω

∣∣∣∣∣∣r
1dω≤

∫ π

−π
|||A(ω)|||2r

∞ |||Fω|||r1dω

≤
(∫ π

−π
|||A(ω)|||2q

∞ dω

)r /q (∫ π

−π
|||Fω|||p1 dω

)r /p

<∞,

hence F Y
ω ∈ Lr ([−π,π],S1(H)).

Proof of Remark 2.5.6. 1. Letting AT =∑
|s|<T e−s aT,s , condition (2.5.12)

is equivalent to (AT )T≥1 being a Cauchy sequence in H, which
is equivalent to (YT,0)T≥1 being a Cauchy sequence in H, where
YT,0 =∑

|s|<T aT,s X−s . Letting T ′ > T , we see that

∥∥YT ′,0 −YT,0
∥∥2
H
= Tr

(( ∑
|s|<T ′

(aT ′,s −aT,s)X−s

)
⊗2

( ∑
|u|<T ′

(aT ′,u −aT,u)X−u

))
= ∑

|s|,|u|<T ′
Tr

(
(aT ′,s −aT,s)RX

u−s(aT ′,u −aT,u)†
)
.

Therefore (2.5.15) is real non-negative, and is equivalent to (AT )T≥1

being a Cauchy sequence.

2. (2.5.16) is obvious since aT ′,s − aT,s is equal to zero if |s| < T and
equal to at if T ≤ |s| < T ′. Furthermore, since∣∣∣Tr

(
asRu−s a†

u

)∣∣∣< |||as |||∞|||au |||∞
∣∣∣∣∣∣RX

u−s

∣∣∣∣∣∣
1,

by Hölder’s inequality, and
∣∣∣∣∣∣RX

t

∣∣∣∣∣∣
1 < M <∞ for all t ∈Z, (2.5.16) is

implied by ∑
T≤|s|<T ′

|||as |||∞ < ε,

which is equivalent to (2.5.17).

3. By Hölder’s inequality, and the fact that RX
t = 0 if |t | > m,

∑
T≤|s|,|u|<T ′

∣∣∣Tr
(
asRu−s a†

u

)∣∣∣≤ ∑
|s|≥T,u∈Z

|||as |||∞|||au |||∞
∣∣∣∣∣∣RX

u−s

∣∣∣∣∣∣
1

= ∑
|s|≥T ;|u−s|≤m

|||as |||∞|||au |||∞
∣∣∣∣∣∣RX

u−s

∣∣∣∣∣∣
1

the change of variables u − s = k yields

≤ M
∑

|k|≤m

∑
|s|≥T

|||as |||∞|||as+k |||∞
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and the Cauchy-Schwarz inequality yields

≤ M
∑

|k|≤m

√ ∑
|s|>T

|||as |||2∞
√ ∑

|s|>T
|||as+k |||2∞.

If (2.5.18) holds, taking T large enough in the last expression implies
that (2.5.16) holds.

4. By Proposition 3.12.11, RY
t =∑

s,l∈Z AsRt−s+l A†
l , and thus

∑
t∈Z

∣∣∣∣∣∣RY
t

∣∣∣∣∣∣∞ ≤∑
s
|||As |||∞

∑
l

|||Al |||∞
(∑

t

∣∣∣∣∣∣RX
t−s+l

∣∣∣∣∣∣∞)
<∞.

2.7 A Short Note About Measurability

The doubly spectral decomposition we will present in Section 2.8 will be

based on integrals of the form
∫ π
−π

(
ϕωj ⊗2ϕ

ω
j

)
dω, where ϕωj is the j -th

eigenfunction of the spectral density operator Fω. In this (technical)
section, we investigate conditions under which such integrals are well
defined.
Let F· be the weak spectral density operators of an FTS X t . This implies
that there is a set E ⊂ [−π,π] of measure 2π such that

|||Fω|||1 <∞, ω ∈ E .

For each ω ∈ E , we can write the singular value decomposition of Fω :

Fω =
∞∑

i=1
µi (ω)ϕωi ⊗2ϕ

ω
i

For any fixed ω ∈ E , {µi (ω)}i≥1 is a non-increasing positive sequences
tending to zero. We denote by {λi (ω)}i≥1 the decreasing sequence of
distinct elements of {µi (ω)}i≥1, define the set

Ik (ω) = {i ≥ 1 :µi (ω) =λk (ω)},

and we denote its cardinality by mk (ω) = |Ik (ω)|. We will also write

I (ω) = {
i ≥ 1 :µi (ω) > 0

}= ⋃
k≥1&λk (ω)>0

Ik (ω) (2.7.1)

for the set of indices of the repeated non-zero eigenvalues of Fω, and

J (ω) = {
j ≥ 1 :λ j (ω) > 0

}
, (2.7.2)

the set of indices of the non-repeated non-zero eigenvalues of Fω. Notice
that

I (ω) = J (ω) = {1,2,3, . . .}
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unless Fω is of finite rank, in which case

{λi (ω)}i≥1 = {λ1(ω), . . . ,λN (ω)} ,

where N −1 = rank(Fω) and λN (ω) = 0. We can now define, for k ∈ J (ω),

Πk (ω) = ∑
i∈Ik (ω)

ϕωi ⊗2ϕ
ω
i ,

which is the projection onto the kth eigenspace of Fω, also called the k-th
eigenprojector of Fω. This way, we can rewrite the eigen-decomposition
of the spectral density operators as

Fω = ∑
j∈J (ω)

λ j (ω)Π j (ω).

This notation is useful since it exhibits the identifiable parts of the sin-
gular value decomposition of Fω. However, though the functions ω 7→
λ j (ω) and ω 7→Π j (ω) are defined almost everywhere, their measurabil-
ity is not necessarily guaranteed. For instance, consider the case where
rank(Fω) = 2 for ω ∈ [0,π/2] and rank(Fω) = 1 if ω ∈ (π/2,π], and all the
non-zero eigenvalues of the spectral density operators are distinct. Then
the eigenprojector Π2(ω) is well defined and trace-class (and in fact con-
tinuous) on [0,π/2], but it is not trace-class on (π/2,π]. In order to avoid
such complications, we define the set

J = ⋂
ω∈[−π,π]

J (ω) = {
j ≥ 1 :λ j (ω) > 0 for all ω ∈ [−π,π]

}
,

which corresponds to the set of indices of the non-repeated eigenvalues
that never vanish. The following Theorem ensures the measurability of the
eigenstructure of the spectral density operators under (weak) summability
conditions.

Theorem 2.7.1. If ω 7→Fω is continuous on [−π,π], with respect to |||·|||∞,
and Fω is compact for all ω ∈ [−π,π], then

1. For each i ≥ 1, the functions

µi : [−π,π] −→R

are uniformly continuous, and therefore measurable.

2. For all j ∈ J , the following functions are measurable:

m j : [−π,π] −→R

λ j : [−π,π] −→R∑
i∈I j (·)

µi (·) : [−π,π] −→R
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3. If E ⊂ [−π,π] is an open subset and for some k ∈∩ω∈E J (ω), the func-
tion

E 3ω 7→
k∑

j=1
m j (ω) is constant, (2.7.3)

then

k∑
j=1

Π j (·) : E −→S∞(H)

ω 7−→
k∑

j=1
Π j (ω)

is continuous, and therefore measurable on E.

Remark 2.7.2.

1. Sufficient conditions for the assumptions of the Theorem is Condi-
tion 2.3.3.

2. Notice that the non-repeated eigenvalues λ j (·) are always measur-
able, and that repeated eigenvalues µi (·) are continuous.

3. Continuity of the eigenprojections a delicate matter. Indeed, each
time two distinct eigenvalues µi (·),µi+1(·) become equal, meaning
that µi (ω0) = µi+1(ω0) but µi (·) 6= µi+1(·) on E \ω0, for some set E
containing ω0, then there is a jump at m j (·), for some j ≥ 1, and
therefore

ω 7→ ∑
i∈I j (ω)

ϕωi ⊗2ϕ
ω
i

is not continuous at ω0. However, if the set I j (ω) is constant on some
open interval E ⊂ [−π,π], then

ω 7→ ∑
i∈I j (ω)

ϕωi ⊗2ϕ
ω
i

is continuous on E.

4. Condition 2.7.3 could be replaced by

∪s
l=1I jl (·) is constant on the open set E ,

for some j1, . . . , js ∈∩ω∈E J (ω), which would give continuity of

ω 7→
s∑

l=1
Π jl (ω).

5. If all non-zero eigenvalues of Fω are distinct, then for all j ∈ J , the
eigenprojections Π j (·) are measurable.
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6. I conjecture that Condition 2.3.3 is sufficient for the mappings

ω 7→ ∑
i∈I j (ω)

ϕωi ⊗2ϕ
ω
i

to be measurable.

Proof of Theorem 2.7.1. We divide the proof into small steps:

(i). The functions µi (ω) are continuous since

|µ(ω+δ)−µ(ω)| ≤ |||Fω+δ−Fω|||∞ → 0, |δ|→ 0,

by Lemma A.2.4. Uniform continuity follows since [−π,π] is com-
pact.

(ii). Let us prove that the functions ω 7→ mk (ω) are measurable, for k ∈ J .
We proceed by induction. If 1 ∈ J , the function m1(ω) is measurable
since

m1(ω) = ∣∣{i ≥ 1 :µi (ω) =µ1(ω)
}∣∣

= ∑
i≥1

1{(µi−µ1)−1(0)} (ω) ,

and the latter sum is finite. Now if m1, . . . ,mk are measurable, and
k +1 ∈ J , we define the function sk (ω) = 1+∑k

j=1 mk (ω). By induc-
tion, it is measurable, and we have

mk+1(ω) = ∣∣{i ≥ 1 :µi (ω) =µsk (ω)(ω)
}∣∣

= ∑
i≥1

1{
g−1

i (0)
} (ω) ,

where gi (ω) =µi (ω)−µsk (ω)(ω). Notice that the last sum is finite for
each ω because µsk (ω)(ω) > 0. Since

gi (ω) =µi (ω)− ∑
l≥1

µl (ω)1{
s−1

k (l )
}(ω),

each gi is measurable, mk+1 is measurable. This completes the
induction.

(iii). For each k ∈ J , the function λk (·) is measurable since

λk (ω) =µsk (ω)(ω) = ∑
l≥1

µl (ω)1{
s−1

k (l )
}(ω).

(iv). The function ω 7→∑
i∈Ik (ω)µi (ω) is measurable since∑

i∈Ik (ω)
µi (ω) = ∑

i≥1
1{i≥sk (ω)}1{i<sk (ω)+mk (ω)}µi (ω).
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(v). If ω 7→ ∑k
j=1 m j (ω) is constant, say equal to k ′ ≥ 1 on the open set

E ⊂ [−π,π], then for all ω ∈ E and (ωn)n≥1 ⊂ E converging to ω, we
have ∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣ k∑

j=1
Π j (ωn)−

k∑
j=1

Π j (ω)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞

=
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ k∑

j=1

∑
i∈I j (ωn )

ϕ
ωn

i ⊗2ϕ
ωn

i −
k∑

j=1

∑
i∈I j (ω)

ϕωi ⊗2ϕ
ω
i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞

=
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑k

j=1 m j (ωn )∑
i=1

ϕ
ωn

i ⊗2ϕ
ωn

i −
∑k

j=1 m j (ω)∑
i=1

ϕωi ⊗2ϕ
ω
i

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣∞

=
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ k ′∑
i=1

[
ϕ
ωn

i ⊗2ϕ
ωn

i −ϕωi ⊗2ϕ
ω
i

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∞

=
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ k∑

j=1

∑
i∈I j (ω)

[
ϕ
ωn

i ⊗2ϕ
ωn

i −ϕωi ⊗2ϕ
ω
i

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞

≤
k∑

j=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∑
i∈I j (ω)

[
ϕ
ωn

i ⊗2ϕ
ωn

i −ϕωi ⊗2ϕ
ω
i

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞

=
k∑

j=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∑
i∈I j (ω)

ϕ
ωn

i ⊗2ϕ
ωn

i −Π j (ω)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞

→ 0,

by Theorem A.2.5. Since the limit is zero for arbitrary sequences
ωn →ω, the continuity is shown.

The previous result motivates introducing the following condition:

Condition 2.7.3. (X t )t∈Z is a second-order stationary FTS with mean zero,
E‖X0‖2 <∞, admitting a weak spectral density operators ω 7→Fω that is
|||·|||∞-continuous. Furthermore, we assume that all the non-zero eigenval-
ues of Fω are all distinct, for each ω ∈ [−π,π].

Notice that Condition 2.7.3 is actually stronger than Condition 2.4.1(∞)
or Condition 2.3.3. Under Condition 2.7.3, the eigenprojectors ω 7→Π j (ω)
are measurable (in fact continuous) if µ j (ω) > 0 for all ω ∈ [−π,π].

2.8 Doubly Spectral Decomposition,

Optimal Finite Dimensional Reduction

2.8.1 Harmonic Principal Component Analysis

It follows from the discussion in the previous section that the stochastic
integral (2.4.11) defined by a truncation of the Cramér–Karhunen–Loève
representation is well-defined. The purpose of this section is to prove that



54 2. DOUBLY SPECTRAL DECOMPOSITIONS OF FUNCTIONAL TIME SERIES

the truncation at a level K of the Cramér–Karhunen–Loève representation
provides in fact the best linear approximation of X with K degrees of
freedom, in a sense that generalizes functional PCA.

Given the stationary functional time series {X t }t∈Z in the real part of H ,
and a sequence {as}s∈Z of bounded operators on H , we can construct a
new functional time series

Yt =
∑
s∈Z

at−s Xs ,

where Yt is a random element of L2 ([0,1],R), which is said to be obtained
by (linear) filtering of X t , or refered to as filtered versions of X t . Notice
that the rank K approximation of X t based on the PCA of R0 can also be
expressed as a filtered version of X t , by choosing as = 0 for all s 6= 0.

We already know from Theorem 2.5.5 that if Condition 2.7.3 holds and∑
s |||as |||∞ <∞, then

Yt =
∫ π

−π
e iωt A(ω)d Z X

ω , A(ω) = ∑
s∈Z

e−iωs as , (2.8.1)

and
F Y
ω = A(ω)F X

ω A†(ω), (2.8.2)

where we have denoted by F X
ω , respectively Z X , the spectral density

operator at ω, respectively the orthogonal increment process, associated
with X . This implies in particular that F Y

ω is continuous with respect to
|||·|||∞.

Consider now the problem of reducing the functional time series X t to a
finite dimensional vector series (say of dimensions q), by filtering X t :

Yt =
∑

s
as X t−s ∈Cq , as ∈S∞(H ,Cq ), (2.8.3)

where S∞(H ,Cq ) denotes the space of bounded operators from H to Cq .
Though the series Yt is no longer interpretable in a functional sense, it
may be filtered anew to yield a functional process

X ∗
t =∑

s
bsYt−s , bs ∈S∞(Cq , H), (2.8.4)

which is interpretable in a functional sense, and is in fact a rank q approx-
imation of X t . Fixing q orthonormal vectors f1, . . . , fq ∈ H , we can identify
either Rq or Cq with the linear span (with real scalars, respectively with
complex scalars) of f1, . . . , fq . This allows us to recast (2.8.3) and (2.8.4)
into the framework developed in Section 2.5, and yields the following
Lemma:

Lemma 2.8.1.

Assume Condition 2.7.3 holds. Let {as}s∈Z ⊂ S∞(H ,Cq ) and {bs}s∈Z ⊂
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S∞(Cq , H) such that ∑
s∈Z

(|||as |||∞+|||bs |||∞
)<∞.

Then, the Cramér representation of X ∗
t , defined in (2.8.4), is

X ∗
t =

∫ π

−π
e iωt B(ω)A(ω)d Z X

ω , inH,

where A(ω) =∑
s∈Z e−iωs as and B(ω) =∑

s∈Z e−iωsbs . Furthermore,

F X ∗
ω = B(ω)A(ω)F †

ωA†(ω)B †(ω). (2.8.5)

Proof. The proof follows easily from the identification of Cq as a closed
linear subspace of H , and is omitted.

Therefore, the Cramér representation of X ∗
t is given by

X ∗
t =

∫ π

−π
e iωtC (ω)d Z X

ω ,

where C (ω) = B(ω)A(ω), and is hence of rank at most q . We are now in a
position to show that the truncated Cramér–Karhunen–Loève expansion
(2.4.11) provides a Harmonic Principal Component Analysis of X t : under
the mean square error approximation criterion

E
∥∥X t −X ∗

t

∥∥2,

which is independent of t by stationarity, the optimal choice of C̃ ω is given

by
∑q(ω)

n=1 ϕ
ω
n ⊗2ϕ

ω
n , where we recall that (ϕωn )n≥1 are the eigenfunctions of

Fω.

Theorem 2.8.2 (Harmonic Principal Component Analysis). Assume Con-
ditions 2.7.3 hold. Let

X t =
∫ π

−π
e iωt d Zω

be a stationary time series in the real part of H, and let X ∗
t = ∫ π

−π e iωtC (ω)d Zω,
with C ∈H. Let q : [−π,π] →N be a measurable function such that

µq(ω)(ω) > 0, ω ∈ [−π,π]. (2.8.6)

Then, the solution to

min
C∈H

E
∥∥X t −X ∗

t

∥∥2

subject to rank(C (ω)) ≤ q(ω),
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is given by

C (ω) =
q(ω)∑
j=1

ϕωj ⊗2ϕ
ω
j ,

where Fω =∑∞
j=1µ j (ω)ϕωj ⊗2ϕ

ω
j is the spectral decomposition of Fω. The

approximation error is given by

E
∥∥X t −X ∗

t

∥∥2 =
∫ π

−π

{ ∑
j>q(ω)

µ j (ω)

}
dω.

Proof. The proof is an adaptation of Brillinger (2001, Theorem 9.3.1) to
our case. Since

X t −X ∗
t =

∫ π

−π
e iωt (I −C (ω))d Zω,

Theorem 2.5.1 yields

E
∥∥X t −X ∗

t

∥∥2 =
∫ π

−π
Tr

(
[I −C (ω)]Fω[I −C (ω)]†

)
dω

=
∫ π

−π
Tr

(
(I −C (ω))F 1/2

ω

[
(I −C (ω))F 1/2

ω

]†
)
dω

=
∫ π

−π

∣∣∣∣∣∣(I −C (ω))F 1/2
ω

∣∣∣∣∣∣2
2dω, (2.8.7)

where F 1/2
ω = ∑∞

j=1

√
µ j (ω)ϕωj ⊗2ϕ

ω
j . The term (2.8.7) is minimized by

minimizing ∣∣∣∣∣∣(I −C (ω))F 1/2
ω

∣∣∣∣∣∣
2

for each ω. This is achieved, under our constraints, by

C (ω) =
q(ω)∑
j=1

ϕωj ⊗2ϕ
ω
j .

Notice that C (ω) is a |||·|||∞-measurable function, since

C (ω) =
q(ω)∑
j=1

ϕωj ⊗2ϕ
ω
j

= ∑
i≥1

1{i≤q(ω)}ϕ
ω
i ⊗2ϕ

ω
i

and the latter sum is finite since q(ω) ∈N. For the error term, notice that

(I −C (ω))F 1/2
ω =

(∑
j≥1

− ∑
j≤q(ω)

)√
µ j (ω)ϕωj ⊗2ϕ

ω
j

= ∑
j>q(ω)

√
µ j (ω)ϕωj ⊗2ϕ

ω
j
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and hence

E
∥∥X t −X ∗

t

∥∥2 =
∫ π

−π

( ∑
j>q(ω)

µ j (ω)

)
dω.

The function in parentheses is measurable since it is an infinite sum of
measurable functions, which is absolutely convergent. Indeed,∫ π

−π

∑
j>q(ω)

|µ j (ω)|dω≤
∫ π

−π
|||Fω|||1dω<∞.

Remark 2.8.3.

1. Condition 2.8.6 is here to ensure that the eigenprojectionsϕi (ω)⊗2ϕi (ω)
are identifiable for i ≤ q(ω).

2. Contrary to the classical finite-dimensional results (e.g. Brillinger
(2001)), we do not restrict q(ω) to be constant over ω. In this sense,
when restricted to finite-dimensional Hilbert spaces, our results are
more general than analogous results for vector-valued time series.

Remark 2.8.4 (Representation as vector time series).

Restricting q(ω) to be a constant functions—say q(ω) = q ∈N for all ω—
yields a rank q version X ∗

t of X t . This can be represented in a 1-1 fashion
by the filtered vector series Yt ∈ Rq of (2.8.3), whose important charac-
teristic is the lack of correlation between its coordinates, and also across
time—just as one expects with the scores obtained in a traditional principal
component analysis. The Yt can therefore serve as the harmonic princi-
pal component scores. (see Section 2.8.2, in particular Remark 2.8.11 and
Proposition 2.8.12)

Remark 2.8.5 (Harmonic PCA dominates fPCA).

Since the q-dimensional linear approximation of X t given by fPCA can be
written as P X t , where P ∈S∞(H) is an orthogonal projection operator of
rank q, Theorem 2.8.2 tells us that

E
∥∥X t −X ∗

t

∥∥2 ≤ E‖X t −P X t‖2. (2.8.8)

In other words, the harmonic PCA dominates fPCA. Let us give another
derivation of (2.8.8). Since E‖X t‖2 <∞, we just need to show that E‖P X t‖2 ≤
E
∥∥X ∗

t

∥∥2. Let R0 =∑
n≥1γnψn ⊗2ψn be the eigen-decomposition of the lag-

0 autocovariance operator. We have that P =∑q
n=1ψn ⊗2ψn , and therefore,
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if µq (ω) > 0 for all ω ∈ [−π,π], we have

E‖P X t‖2 = ETr(P X t ⊗2 P X t )

= Tr(PR0P )

= Tr

(
q∑

n=1
γnψn ⊗2ψn

)

=
q∑

n=1

〈
R0ψn ,ψn

〉
=

q∑
n=1

〈(∫ π

−π
Fωdω

)
ψn ,ψn

〉
(using the inversion formula)

=
∫ π

−π

(
q∑

n=1

〈
Fωψn ,ψn

〉)
dω

≤
∫ π

−π

(
q∑

n=1
µn(ω)

)
dω (by Theorem A.2.3)

= E
∥∥X ∗

t

∥∥2, (by Theorem 2.5.1)

and the claim is proven.

Let us now discuss the case where E‖P X t‖2 = E
∥∥X ∗

t

∥∥. From the above
calculations, this happens for q ≥ 1 fixed if, and only if, for almost every
ω ∈ [−π,π], we have the equality

q∑
n=1

ψn ⊗2ψn =
q∑

n=1
ϕωn ⊗2ϕ

ω
n . (2.8.9)

(recall that we are assuming that Condition 2.7.3 holds). Equation (2.8.9)
means that the eigenspace spanned by the first q eigenfunctions of the
spectral density operators are constant in ω. Now if we assume that all
the spectral density operators Fω are strictly positive definite, and that for
each ω ∈ [−π,π], all their eigenvalues are distinct, then E‖P X t‖2 = E

∥∥X ∗
t

∥∥
holds for all q ≥ 1 if and only if

ϕωn ⊗2ϕ
ω
n =ψn ⊗2ψn , n ≥ 1, ω-a.e.

This implies that the eigen-decomposition of the spectral density operator
at ω is given by

Fω = ∑
n≥1

µn(ω)ψn ⊗2ψn , ω-a.e.

and therefore, using the inversion formula, we get, for all t ∈Z,

Rt =
∫ π

−π
e iωtFωdω

=
∫ π

−π
e iωt

( ∑
n≥1

µn(ω)ψn ⊗2ψn

)
dω
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= ∑
n≥1

∫ π

−π
e iωtµn(ω)dω · (ψn ⊗2ψn

)
(by the dominated convergence Theorem)

= ∑
n≥1

2
∫ π

0
cos(ωt )µn(ω)dω · (ψn ⊗2ψn

)
,

thus
Rt =

∑
n≥1

γt
nψn ⊗2ψn , t ∈Z, (2.8.10)

where γt
n = 2

∫ π
0 cos(ωt)µn(ω)dω. In particular, (2.8.10) implies that an

eigenfunction of R0 will also be an eigenfunction of all lag-t autocovari-
ance operators, and that the scores ξt

n = 〈
X t ,ψn

〉
of the Karhunen–Loève

expansion of X t ,
X t =

∑
n≥1

ξt
nψn ,

are uncorrelated in space, E
[
ξt

nξ
t
m

]= 0 for n 6= m, and also across time,

E
[
ξt

nξ
s
m

]= 〈
Rt−sψm ,ψn

〉= 0, t 6= s;n,m ≥ 1.

Essentially, this means that X t ≡
(
ξ1

t ,ξ2
t , . . .

)T
, where each (ξn

t )t∈Z is a uni-
variate time series that is uncorrelated with every (ξm

t )t∈Z, for m 6= n. Equa-
tion (2.8.10) also implies that

R−t =R†
t =Rt , ∀t ∈Z,

which can be described as second-order time reversibility of X t .

Therefore, harmonic PCA strictly dominates fPCA unless the FTS X t is
second-order time reversible, or if all its autocovariance operators do not
share the same eigenfunctions.

We now make precise the way in which a Cramér–Karhunen–Loève repre-
sentation of the form (2.4.9) of (2.4.10) holds.

Theorem 2.8.6 (Cramér–Karhunen–Loève decomposition). Under the
conditions of Theorem 2.8.2, we have:

E

∥∥∥∥∥X t −
∫ π

−π
e iωt

(
q∑

n=1
ϕωn ⊗2ϕ

ω
n

)
d Zω

∥∥∥∥∥
2

=
∫ π

−π

{ ∑
n>q

µn(ω)

}
dω. (2.8.11)

Furthermore, if Fω is strictly positive-definite for all ω ∈ [−π,π], we have
that

X t =
∑

n≥1

∫ π

−π
e iωt (ϕωn ⊗2ϕ

ω
n )d Zω inH, (2.8.12)

where each of the summands∫ π

−π
e iωt (ϕωn ⊗2ϕ

ω
n )d Zω, n ≥ 1, t ∈Z,
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is almost surely in the real part of H, and these are orthogonal in space (n),
across all time lags, i.e.,

E

[∫ π

−π
e iωt (ϕωn ⊗2ϕ

ω
n )d Zω⊗2

∫ π

−π
e iωs(ϕωn ⊗2ϕ

ω
n )d Zω

]
= δn,m ·

∫ π

−π
e iω(t−s)µn(ω)ϕωn ⊗2ϕ

ω
n dω.

Remark 2.8.7 (The Cramér–Karhunen–Loève is a natural extension of the
Karhunen–Loève expansion to FTS).
This Theorem shows that (2.8.12) decomposes the FTS X t into a sum of
components that are not only uncorrelated across n, within each timepoint
t—a property already present in the Karhunen–Loève expansion—but also
across time lags. In this sense, the Cramér–Karhunen–Loève decomposition
is the natural extension of the Karhunen–Loève expansion for functional
time series.

Proof of Theorem 2.8.6. The first statement is a corollary of Theorem 2.8.2.
Let ΦN (ω) = ∑N

n=1ϕ
ω
n ⊗2ϕ

ω
n for any N ≥ 1, including for N =∞. Notice

that

‖Φ∞−ΦN‖2
H =

∫ π

−π
Tr

( ∑
n>N

µn(ω)ϕωn ⊗2ϕ
ω
n

)
dω→ 0, N →∞, (2.8.13)

by the dominated convergence Theorem. Therefore, by the isometry
property (2.5.6),

X t =
∫ π

−π
e iωtΦ∞(ω)d Zω

=I

(
lim

N→∞
etΦN

)
= lim

N→∞
I (etΦN )

= lim
N→∞

∫ π

−π
e iωt

(
N∑

n=1
ϕωn ⊗2ϕ

ω
n

)
d Zω

= lim
N→∞

N∑
n=1

∫ π

−π
e iωt (

ϕωn ⊗2ϕ
ω
n

)
d Zω

=
∞∑

n=1

∫ π

−π
e iωt (

ϕωn ⊗2ϕ
ω
n

)
d Zω.

Let us now show that Y = ∫ π
−π e iωt

(
ϕωj ⊗2ϕ

ω
j

)
d Zω is almost surely in the

real part of H , or equivalently, that Y = Y almost surely. Using Theo-
rem 2.5.1, we get

Y =
∫ π

−π
e i(−ω)t

(
ϕ−ω

j ⊗2ϕ
−ω
j

)
d Zω a.s.

=
∫ π

−π
e iωt

(
ϕ−ω

j ⊗2ϕ
−ω
j

)
d Zω
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=
∫ π

−π
e iωt

(
ϕωj ⊗2ϕ

ω
j

)
d Zω (by Proposition 2.8.8)

= Y .

Turning to the last statement of the Theorem, Proposition 2.5.1 yields

E

[∫ π

−π
e iωt (

ϕωn ⊗2ϕ
ω
n

)
d Zω⊗2

∫ π

−π
e iωs (

ϕωm ⊗2ϕ
ω
m

)
d Zω

]
=

∫ π

−π
e iω(t−s) (ϕωn ⊗2ϕ

ω
n

)
Fω

(
ϕωm ⊗2ϕ

ω
m

)† dω

= δn,m

∫ π

−π
e iω(t−s)µn(ω)

(
ϕωn ⊗2ϕ

ω
n

)
dω.

This finishes the proof.

2.8.2 Representation as a Vector Time Series

In this section, we will provide the expressions of the filters A,B involved
in (2.8.3) and (2.8.4). We first give some additional properties of the weak
spectral density operators.

Proposition 2.8.8.
Assume F· ∈ L1 ([−π,π],S1(H)) are the weak spectral density operators of
the functional time series (X t ), taking values in the real part of H. Then

Fω =F−ω, for almost every ω ∈ [−π,π] .

Furthermore, µ j ≥ 0 is an eigenvalue of Fω if and only if it is an eigenvalue
of F−ω, i.e.,

µ jΠ j (ω) =FωΠ j (ω) and µ jΠ j (−ω) =F−ωΠ j (−ω),

where Π j (±ω) are the corresponding eigenprojections corresponding to the
eigenvalue µ j , and these satisfy

Π j (ω) =Π j (−ω).

Proof. Assume without loss of generality that Fω is defined for all ω ∈
[−π,π]. For any t ∈Z, we have

∫ π

−π
e iωtFωdω=

∫ π

−π
e iω(−t )Fωdω

=R−t

=R−t (since X t is real)

=
∫ π

−π
e i(−ω)tFωdω

=
∫ π

−π
e iωtF−ωdω,
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where we did the change of variables α=−ω for the last equality. Proposi-
tion B.0.16 therefore yields the first statement of the proof. For the other
statements, letting Fω =∑

j≥1µ j (ω)Π j (ω) be the eigendecomposition of
the spectral density operator at ω, we have

F−ω =Fω = ∑
j≥1

µ j (ω)Π j (ω).

Since Πi (ω)Π j (ω) = Πi (ω)Π j (ω) = δi , j , and the last statements follow
from the uniqueness of the eigendecompositions of a compact operator.

We now turn to the representation of X ∗
t as a vector time series. We

will do this assuming that Conditions 2.7.3 hold, and for a truncation
function q : [−π,π] →N that is càdlàg with a finite number of jumps, i.e.
q(ω) =∑L

l=1 1[ωl ,ωl+1)ql , where

−π=ω1 < ·· · <ωL+1 =π,

and the ql s are non-negative integers satisfying q(ω) ∈ I (ω) for all ω ∈
[−π,π]. Note that allowing ql = 0 for some l corresponds to filtering out
the frequencies in the range [ωl ,ωl+1). First we need to find, for each
ω ∈ [−π,π], operators A(ω) ∈S∞(H ,Cq ) and B(ω) ∈S∞(Cq , H) such that

B(ω)A(ω) =
q(ω)∑
j=1

ϕωj ⊗2ϕ
ω
j ,

where q = maxω q(ω), Letting v1, . . . , vq be the canonical orthonormal
basis of Cq (or any orthonormal basis), we see that choosing

A(ω) =



ϕω1
ϕω2

...

ϕωq(ω)

0
...

0


=

q(ω)∑
j=1

v j ⊗2ϕ
ω
j ,

and B(ω) = A(ω)† will work. The next step is to take the Fourier transform
of A(·) and B(·) to define filters (as)s∈Z and (bs)s∈Z that define the vector
series (Yt ), and the reconstructed series (X ∗

t ). In order to do so, we will
assume that ω 7→ ϕωj is measurable, as a [−π,π] 7→ H mapping, for all
j = 1, . . . , q . The need for such an assumption is explained in the following
remark.



2.8 OPTIMAL FINITE DIMENSIONAL REDUCTION 63

Remark 2.8.9.
Assuming measurability of the mapping ω 7→ ϕωj is needed, even under
Condition 2.7.3, because the eigenfunctions (ϕωj ) j≥1 are not identifiable.
Indeed, if ϕ is an eigenfunction of Fω, αϕ will also be an eigenfunction
with the same eigenvalue, for any α ∈ C of modulus one. Therefore the
function ω 7→ϕωj could be modified to ω 7→α(ω)ϕωj for any (possibly non-
measurable) function ω 7→α(ω) ∈C satisfying |α(ω)| = 1 for all ω ∈ [−π,π].

We now turn to the filters (as). These need to satisfy A(ω) =∑
s∈Z e−iωs as .

Applying Proposition B.0.17, we can take

as = (2π)−1
∫ π

−π
e iωs A(ω)dω.

More precisely, we have for all s ∈Z,

as = (2π)−1
∫ π

−π
e iωs A(ω)dω

= (2π)−1
∫ π

−π
e iωs

[
q(ω)∑
j=1

v j ⊗2ϕ
ω
j

]
dω

= (2π)−1
L∑

l=1

∫ ωl+1

ωl

e iωs

[
ql∑

j=1
v j ⊗2ϕ

ω
j

]
dω

= (2π)−1
L∑

l=1

ql∑
j=1

v j ⊗2

[∫ ωl+1

ωl

e−iωsϕωj dω

]
.

The filters (bs) are then given by the relation bs = a†
−s . Explicitly,

bs = (2π)−1
L∑

l=1

ql∑
j=1

[∫ ωl+1

ωl

e iωsϕωj dω

]
⊗2 v j .

Let us now give some remarks about the filtered series Yt :

Remark 2.8.10 (Conditions for Yt to be real valued).
The series Yt , constructed by filtering X t with the filter (as) is not necessarily
real valued. Sufficient conditions for it to be real valued is that as X t−s takes
values in the real part of H, or equivalently that as = as . Since

as = (2π)−1
∫ π

−π
e iωs A(ω)dω

and

as = (2π)−1
∫ π

−π
e−iωs A(ω)dω= (2π)−1

∫ π

−π
e iωs A(−ω)dω,

we would need A(ω) = A(−ω) for almost every ω, or equivalently that

(i) q(ω) = q(−ω) almost everywhere, and

(ii) ϕωj =ϕ−ω
j , for each j = 1,2, . . . , q(ω).
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Condition (i) is easy to satisfy. Let us discuss Condition (ii). Since the
eigenspaces of the spectral density operators corresponding to non-zero
eigenvalues are assumed to be of multiplicity one, andΠ j (ω) =Π j (−ω) (see
Proposition 2.8.8), we know that there exists a complex number α(ω) of
modulus one such thatϕωj =α(ω)·ϕ−ω

j . It is possible to choose theϕωj s such
that α(ω) = 1, yielding therefore a real valued vector time series Yt . Indeed,
just construct ω 7→ϕωj for ω ∈ [0,π], and then extend it to ω ∈ [−π,0) using

the relation ϕ−ω
j =ϕωj .

Remark 2.8.11.
In the particular case where q(ω) = q is constant, we have

as = (2π)−1
q∑

j=1
v j ⊗2

[∫ π

−π
e−iωsϕωj dω

]
= (2π)−1

∫ π

−π
e−iωs


ϕω1

...

ϕωq

dω

and

bs = (2π)−1
q∑

j=1

[∫ π

−π
e iωsϕωj dω

]
⊗2 v j =

∫ π

−π
e iωs

(
ϕω1 , . . . ,ϕωq

)
dω.

In this case, the series Yt is given by

Yt =
q∑

j=1
v j ⊗2

[∑
s∈Z

∫ π

−π
e iωs

〈
X t−s ,ϕωj

〉
dω

]
= ∑

s∈Z

∫ π

−π
e iωs


〈

X t−s ,ϕω1
〉

...〈
X t−s ,ϕωq

〉
dω.

(2.8.14)
In particular, we only need condition (i i ) to hold for Yt to be real-valued.

Proposition 2.8.12.
Assume Conditions 2.7.3 holds for X t , and let Yt be defined by (2.8.14).
Then, the spectral density of Yt is given by

F Y
ω =


µ1(ω) 0 0

0
. . . 0

0 0 µq (ω)

= diag
(
µ1(ω), . . . ,µq (ω)

)
,

where µ j (ω) is the j -th eigenvalue of F X
ω . Furthermore, if we write Yt =(

Yt ,1, . . . ,Yt ,q
)
, we have

cov
(
Yt ,i ,Y0, j

)= δi , j ·
∫ π

−π
exp[iωt ]µi (ω)dω, ∀i , j = 1, . . . , q ; t ∈Z.

In other words, all the distinct coordinates of Yt are uncorrelated across all
time lags

Proof. Let as be defined as in Remark 2.8.11. We can assume without
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loss of generality, that (v j )q
j=1 ⊂ H , and therefore that as ∈ S2(H), and

A ∈ L2([−π,π],S2(H)). By Proposition B.0.17, we know that∑
|n|<N

aset−s → et A as N →∞, (2.8.15)

in L2([−π,π],S2(H)), where A(ω) = ∑q
j=1 v j ⊗2ϕ

ω
j . Notice that the func-

tions
∑

|n|<N aset−s belong to the linear space

V =
{

q∑
j=1

v j ⊗2 g j : g j ∈ L2([−π,π], H)

}
.

Furthermore, for any g ∈V , we have

∥∥g
∥∥2
H =

∫ π

−π

∣∣∣∣∣∣∣∣∣g (ω)Fωg †(ω)
∣∣∣∣∣∣∣∣∣

1
dω

≤
∫ π

−π

∣∣∣∣∣∣g (ω)
∣∣∣∣∣∣2

2|||Fω|||1dω

≤ c
∫ π

−π

∣∣∣∣∣∣g (ω)
∣∣∣∣∣∣2

2dω,

where c = supω |||Fω|||1 <∞. Therefore (2.8.15) also holds in H, and Theo-
rem 2.5.5 can be applied. We get

F Y
ω = A(ω)F X

ω A†(ω)

=
(

q∑
j=1

v j ⊗2ϕ
ω
j

)(∑
i≥1

µi (ω)ϕωi ⊗2ϕ
ω
i

)(
q∑

j=1
ϕωj ⊗2 v j

)

=
q∑

j=1
µ j (ω)

(
v j ⊗2 v j

)
.

Using the inversion formula, we get

cov
(
Yt ,i ,Y0, j

)= 〈
RY

t v j , vi
〉= δi , j

∫ π

−π
e iωtµi (ω)dω,

which finishes the proof.

2.9 Outlook

As far as I know, the present Chapter is the first attempt to generalize
the Karhunen–Loève expansion to the setting of functional time series
(apart from the article (Panaretos & Tavakoli 2013a), see discussion be-
low). The Cramér–Karhunen–Loève decomposition has several potential
applications. Since an FTS X t can be approximately represented by a
vector time series Yt whose coordinates are uncorrelated across all time
lags (see Section 2.8.2), the Cramér–Karhunen–Loève decomposition can
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be used for modeling purposes. It would be preferable to current method-
ology (based on truncation of the Karhunen–Loève expansion;see, e.g.,
Aue, Norinho & Hörmann (2014, to appear)) because truncation of the
Cramér–Karhunen–Loève decomposition explains more of the series total
variance, and the models under consideration would have fewer parame-
ters (because of the uncorrelatedness of the coordinates of Yt across all
time lags). The Cramér–Karhunen–Loève decomposition could also be
used to simulate an FTS with specific properties, or for comparing the
second-order dynamics of functional time series (see Chapter 4).
Extensions of the results of this chapter to general second-order station-
ary functional time series, not necessarily admitting a spectral density,
would be of interest. For univariate time series, this is done through
Herglotz’s Theorem (which is a particular case of Bochner’s theorem, see
Rudin (1991)), which states that for any second-order stationary time
series, there exists a spectral measure F on [−π,π] such that cov(X t , X0) =∫ π
−π e iωt dF (ω). The extension to the multivariate (finite dimensional)

setting causes no problem, because the results can be derived for each co-
ordinate and then put together, without any convergence problem since
the number of coordinates is finite. The functional case is however more
complicated, because of the infinite number of coordinates. However, it
seems that Milnos’ Theorem (Kuo 1996) could allow the extension of our
results to general second-order stationary functional time series.

Differences with Panaretos & Tavakoli (2013a)

Although an earlier version of results presented in this chapter has been
published (Panaretos & Tavakoli 2013a), several results presented in this
chapter have weaker assumptions than those of Panaretos & Tavakoli
(2013a). Indeed, Panaretos & Tavakoli (2013a) give a functional Cramér
representation for FTS in L2 ([0,1],R), under summability conditions on
the nuclear norm of the autocovariance operators, continuity of the auto-
covariance kernels, and their summability in the supremum norm. The
functional Cramér representation given in Section 2.4 only assumes the
existence of weak spectral density operators, which always exists under
weaker summability conditions (see Proposition 2.3.5). Furthermore, we
derive in Section 2.5 the Cramér representation of linear filterings of a
functional time series, under summability assumptions of the operator
norm of the filtering operators, whereas Panaretos & Tavakoli (2013a)
derive the same result under summability of the Hilbert–Schmidt norm of
the filters, a much more stringent assumption.



CHAPTER 3
Inference for the Spectral

Density Operators

By combining a functional Cramér representation with the Karhunen–
Loève expansion, we developed in Chapter 2 a doubly spectral decom-
position (the Cramér–Karhunen–Loève decomposition) for second-order
stationary functional time series. This decomposition generalizes the
Karhunen–Loève expansion, and provides a way of approximating the
functional series by a vector series which dominates traditional fPCA.
The main objects involved in this construction were the spectral density
operators—whose Fourier coefficients are given by the autocovariance op-
erators of the functional time series—and their eigenstructure. In practice,
the spectral density operators and their eigenstructure must be estimated
from data. The purpose of this chapter is to address this problem. We
begin by introducing some notation (Section 3.1), and defining the main
objects that will be used throughout this chapter (Section 3.2). We then
present, in Section 3.3, the functional Discrete Fourier Transform, and
study its asymptotic properties. This will play a major role in the esti-
mation of the spectral density operators. We will see in particular that
its asymptotic covariance is given by the spectral density operators, a
property that motivates the study of their empirical covariance, the peri-
odogram operators (Section 3.4). We shall see that these are asymptotically
unbiased—but inconsistent—estimators of the spectral density opera-
tors. Nevertheless, by smoothing the periodogram (Section 3.5), we can
circumvent this problem. We will show in Section 3.6 that the result-
ing estimators, the sample spectral density operators, are consistent and
asymptotically Gaussian estimators of the spectral density operators, un-
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der suitable weak dependence assumptions. We then show, in Section 3.7,
consistency and asymptotic normality for estimators of the eigenstruc-
ture of the spectral density operators. Since Functional Data are usually
recorded from discrete and noisy observations, we provide in Section 3.8
some conditions under which estimators constructed under noisy and
discrete observations are still consistent. We present in Section 3.9 some
numerical simulations to assess the finite sample performance of our esti-
mators, and give in Section 3.10 a discussion of the technical conditions
involved in our asymptotic results, and how they might be weakened. A
brief outlook (Section 3.11) concludes this chapter. Some technical results
used in this chapter are gathered in Section 3.12.

Although an earlier version of this chapter has been published (Panare-
tos & Tavakoli 2013a,b), some results present in this chapter are new
or stronger than those already published (e.g. Theorem 3.6.1, Proposi-
tion 3.10.1 and Theorem 3.8.3).

3.1 Notation

In this chapter, we will study the problem of estimation of the spectral
density operators and their eigenstructure, for a functional time series
(X t )t∈Z taking values in L2 ([0,1],R). Although we focus here on the case
H = L2 ([0,1],R), the proofs can be straightforwardly extended to more
general complexified separable Hilbert spaces. Since

L2 ([0,1],R) ⊂ L2 ([0,1],C),

we can view our functional time series X t ∈ L2 ([0,1],R) as an FTS in
L2 ([0,1],C) that takes only real values.

We shall denote the inner product of L2 ([0,1],C) by 〈·, ·〉, and denote its
corresponding norm by ‖·‖. We will denote the imaginary number by
i ∈ C, i.e. i2 = −1, and denote the complex conjugate of α ∈ C by α. We
also define ∆(T )(ω) =∑T−1

t=0 exp(−iωt ).

We will use the letters τ,σ to denote the parametrization index of the
curves X t , i.e.

τ 7→ X t (τ), τ ∈ [0,1].

Of course, since X t ∈ L2 ([0,1],C), the pointwise evaluation X t (τ) does not
make sense, unless the curves are smooth, but writing the results in such
a way makes it easier to understand the statements , by allowing analogies
with the multivariate case. Therefore, statements such as

EX t (τ) =µ(τ), τ ∈ [0,1]

should be understood as ∥∥EX t −µ
∥∥= 0.
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In order to emphasize this, we will often write

EX t (τ) =µ(τ), in L2.

At times, we will need to express equalities between elements of the
Hilbert space L2

(
[0,1]2,R

)
, or more generally L2([0,1]p ,C). We will abuse

notation and write〈
f , g

〉
2 =

∫
[0,1]p

f (y)g (y)d y, f , g ∈ L2([0,1]p ,C), (3.1.1)

and ‖·‖2 = 〈·, ·〉2, without changing the notation for distinct dimensions p.

When stating an asymptotic result, we shall use the small-o, big-O nota-
tion: for a sequence (an) ⊂ H , where (H ,‖·‖) is a Hilbert space, an = o(1)
means an → 0, an =O(1) means that there exists some M > 0 such that

‖an‖ < M , n large enough,

and an = o(rn), respectively an =O(rn), means anr−1
n = o(1), respectively

anr−1
n =O(1). For instance,

a(T )(τ,σ) = b(τ,σ)+o(T −1), as T →∞, in L2,

will mean
T

∥∥a(T ) −b
∥∥

2 → 0, T →∞.

For a function g : D ⊂Rn →C, we denote
∥∥g

∥∥∞ = supx∈D |g (x)|.
A function a ∈ L2

(
[0,1]2,C

)
induces an operator A on L2 ([0,1],C), through

right-integration,

A f (τ) =
∫ 1

0
a(τ,σ)dσ, f ∈ L2 ([0,1],C).

The function a is called the kernel of A, and A is called an integral operator.
We have ‖a‖2 = |||A|||2, and recall that |||·|||2

denotes the

Hilbert–Schmidt norm,

see Section A.2.2.2 on

page 220

there is in fact a bijective correspondence
between such kernels and Hilbert–Schmidt operators.

3.2 Basic Definitions and Main Assumptions

We will assume in this chapter that X t is a second-order FTS in L2 ([0,1],R),
with E‖X0‖2 <∞. The mean function of X t is defined by

µ(τ) = EX t (τ), in L2,

and the lag-t autocovariance kernel of X t by

rt (τ,σ) = E
[(

X t (τ)−µ(τ)
)(

X t (σ)−µ(σ)
)]

, t ∈Z, in L2. (3.2.1)
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If continuity in mean square of X t is assumed, then the autocovariance
kernels are also well defined pointwise. Each kernel rt induces a corre-
sponding operator Rt : L2 ([0,1],C) → L2 ([0,1],C) by right integration, the
autocovariance operator at lag t ,

Rt h(τ) =
∫ 1

0
rt (τ,σ)h(σ)dσ= cov(〈X0,h〉, X t (τ)) , h ∈ L2 ([0,1],C).

One of the notions we will employ to quantify the weak dependence
among the observations {X t } is that of a cumulant kernel of the series.

Definition 3.2.1.
The k-th order cumulant kernel of X t1 , . . . , X tk is the unique element A ∈
L2

(
[0,1]k ,C

)
that satisfies〈

A,ϕ1⊗ϕ2⊗·· ·⊗ϕk
〉= cum

(〈
X t1 ,ϕ1

〉
, . . . ,

〈
X tk ,ϕk

〉)
, (3.2.2)

for all ϕ1, . . . ,ϕn ∈ L2 ([0,1],C). We write

A = cum
(
X t1 , . . . , X tk

)
.

We recall that for random variables Y1, . . . ,Yk ∈C, the cumulant is defined
by

cum(Y1, . . . ,Yk ) =
∑

ν=(ν1,...,νp )
(−1)p−1(p −1)!

p∏
l=1

E

[ ∏
j∈νl

Y j

]
,

where the sum extends over all unordered partitions of {1, . . . ,k}.

An intuitive way of understanding the previous definition is that

cum
(
X t1 , . . . , X tk

)
(τ1, . . . ,τk ) = cum

(
X t1 (τ1), . . . , X tk (τk )

)
= ∑
ν=(ν1,...,νp )

(−1)p−1(p −1)!
p∏

l=1
E

[ ∏
j∈νl

X t j (τ j )

]
,

in L2, where the sum extends over all unordered partitions of {1, . . . ,k}.
Assuming E‖X0‖k <∞, k ≥ 1, guarantees that the cumulant kernels of
order k are well defined (see Proposition 3.12.6).
A cumulant kernel of order 2k gives rise to a corresponding 2k-th order
cumulant operator Rt1,...,t2k : L2([0,1]k ,C) → L2([0,1]k ,C), also denoted
cumop

(
X t1 , . . . , X t2k

)
, and defined by

Rt1,...,t2k (ϕk+1⊗ . . .⊗ϕ2k ) = cum
(

X t1 , . . . , X tk ,
〈
ϕk+1, X tk+1

〉
, . . . ,

〈
ϕ2k , X t2k

〉)
= cum

(
X t1 , . . . , X tk ,

〈
ϕk+1, X tk+1

〉
, . . . ,

〈
ϕ2k , X t2k

〉)
(3.2.3)

for all ϕk+1, . . . ,ϕ2k ∈ L2 ([0,1],C). The equivalent pointwise definition of
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this operator is given by

Rt1,...,t2k h(τ1, . . . ,τk ) =
∫

[0,1]k
cum

(
X t1 (τ1), . . . , X t2k−1 (τ2k−1), X t2k (τ2k )

)
×h(τk+1, . . . ,τ2k )dτk+1 . . .dτ2k .

The following weak dependence conditions will be used in this chapter:

Condition C(l,k): X t is k-th order stationary, and for each j = 1, . . . ,k−1,

∞∑
t1,...,tk−1=−∞

(1+|t j |l )
∥∥cum

(
X t1 , . . . , X tk−1 , X0

)∥∥
2 <∞.

For completeness, we recall here the definition of k-th order stationarity:

Definition 3.2.2.
A sequence of random elements (εt )t∈Z in H with E‖εt‖k <∞ for all t ∈Z
is called k-th order stationary (k a positive integer) if for all t1, . . . , tl ∈Z,
and l = 1, . . . ,k,

E
[
εt1+s ⊗εt2+s ⊗·· ·⊗εtl+s

]
is independent of s ∈Z.

Notice that condition C(0,2) is equivalent to

X t is second-order stationary and
∑
t∈Z

‖rt‖2 =
∑
t∈Z

|||Rt |||2 <∞.

Recall that if X t is a second-order stationary FTS with
∑

t∈Z |||Rt |||∞ and∑
t∈Z |Tr(Rt )| <∞, Proposition 2.3.5 tells us that the spectral density op-

erators of X t are given by

Fω = (2π)−1
∑
t∈Z

e−iωtRt , ω ∈ [−π,π],

that they are continuous in ω (with respect to |||·|||∞), and that they are
uniformly bounded: |||Fω|||1 ≤ M <∞ for all ω ∈ [−π,π]. Under the addi-
tional condition thatω 7→ Tr(Fω) is continuous, we have an even stronger
result:

Proposition 3.2.3.
Suppose Conditions 2.3.3 and 2.3.4 hold, and that

ω 7→ Tr(Fω), ω ∈ [−π,π],

is continuous. Then, for any orthonormal basis (en)n≥1 of L2 ([0,1],C), the
convergence of the following series is uniform in ω ∈ [−π,π]:

Tr(Fω) =
∞∑

n=1
〈Fωen ,en〉.
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Proof. Let gn(ω) = 〈Fωen ,en〉. Notice that gn is continuous on [−π,π],
and gn(ω) ≥ 0 for all ω ∈ [−π,π]. Defining

GN (ω) =
N∑

n=1
gn(ω),

we have that GN (ω) ≤GN+1(ω) for all N ≥ 1, and all ω ∈ [−π,π]. Further-
more, every GN is continuous on [−π,π], and

Tr(Fω) = lim
N→∞

GN (ω), ω ∈ [−π,π].

Since ω 7→ Tr(Fω) is continuous on the compact set [−π,π], Dini’s Theo-
rem (Rudin 1976, Theorem 7.13) tells us that the convergence is uniform
on [−π,π].

The following proposition gives some properties of the spectral density
operators, under some summability conditions that are stronger than
those seen in Chapter 2.

Proposition 3.2.4.
Suppose p = 2 or p =∞, and consider the following conditions:

I(p). the autocovariance kernels satisfy
∑

t∈Z ‖rt‖p <∞,

II. the autocovariance operators satisfy
∑

t∈Z |||Rt |||1 <∞,

where |||Rt |||1 is the nuclear norm. Then, under I(p), for any ω ∈ R, the
following series converges in ‖·‖p :

fω(·, ·) = 1

2π

∑
t∈Z

exp(−iωt )rt (·, ·). (3.2.4)

We call the limiting kernel fω the spectral density kernel at frequency ω. It
is uniformly bounded and also uniformly continuous in ω with respect to
‖·‖p , i.e. given any ε> 0, there exists a δ> 0 such that

∀ω1,ω2, |ω1 −ω2| < δ =⇒ ∥∥fω1 − fω2

∥∥
p < ε.

The spectral density operator Fω, the operator induced by the spectral
density kernel through right-integration, is self-adjoint and non-negative
definite for allω ∈R. Furthermore,ω 7→ fω is 2π-periodic, and the following
inversion formula holds in ‖·‖p :∫ 2π

0
fα(τ,σ)e itαdα= rt (τ,σ), t ∈Z;τ,σ ∈ [0,1]. (3.2.5)

Under only II, we have
Fω = ∑

t∈Z
e−iωtRt , (3.2.6)
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where the convergence is uniform in nuclear norm. In particular, the
spectral density operators are nuclear, ω 7→ Fω is uniformly continuous
(with respect to |||·|||1), and |||Fω|||1 ≤

∑
t |||Rt |||1 <∞.

Proof. The convergence of (3.2.6) in ‖·‖p and the uniform boundedness
of the spectral density kernel follows from the triangle inequality. Using

the property rt (τ,σ) = [r−t (σ,τ)]T , we obtain fω(τ,σ) = [
fω(σ,τ)

]†, so that
the spectral density operator Fω is self-adjoint. For uniform continuity,
notice that∥∥fω1 − fω2

∥∥
p ≤ ∑

t∈Z

∣∣e−itω1 −e−itω2
∣∣‖rt‖p

≤C
∑

|t |≤N

∣∣e−itω1 −e−itω2
∣∣+2

∑
|t |>N

‖rt‖p , (3.2.7)

where C = maxt∈Z ‖rt‖p . Fixing ε > 0, since I(p) holds, we can choose
N = N (ε) > 0 such that the right hand summand of (3.2.7) is smaller than
ε/2. Now since for each t , the function ω 7→ e−itω is uniformly continu-
ous, we can choose a δ = δ(N ,ε) > 0 such that the left hand summand
of (3.2.7) is smaller than ε/2. Since δ = δ(N (ε),ε) = δ(ε), uniform conti-
nuity follows. The non-negativity and the inversion formula follow from
Proposition 2.3.5.
If II holds, then I (2) holds and the spectral density kernel is defined in
an L2 sense. Equation (3.2.6) then follows from triangle inequality. The
uniform convergence and uniform continuity follow from the triangle
inequality and an argument similar to (3.2.7).

3.3 The Functional Discrete Fourier Transform

Recall the Cramér representation, which tells us that X t =
∫ π
−π e iωt d Zω. We

wish to estimate Fω, which is the covariance operator of the infinitesimal
increment d Zω. This motivates the following definition.

Definition 3.3.1.
Based on a finite stretch X0, . . . , XT−1 of the FTS X t , we define the functional
Discrete Fourier Transform (fDFT) of {X t }T−1

t=0 ,

X̃ (T )
ω (τ) = (2πT )−1/2

T−1∑
t=0

X t (τ)exp(−iωt ).

which is the functional version of the discrete Fourier transform (DFT).

Intuitively, the fDFT estimates the increment d Z , and we might hope that
its covariance will be close to the spectral density operators. It turns out
that this is true asymptotically, under some weak dependence conditions,
as we shall see later on.
Notice that the construction of the fDFT does not require the representa-
tion of the data in a particular basis. The fDFT transforms the T functional
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observations to a mapping from R into L2 ([0,1],C). It straightforwardly
inherits some basic analytical properties that its finite dimensional coun-
terpart satisfies; for example, it is 2π-periodic and Hermitian with respect
to ω, and linear with respect to the series {X t }.
Since the fDFT will be the building block of our estimation procedure, we
will give a few results concerning its various moments. For this purpose,
we need to introduce the notion of a higher order spectral density, the
cumulant spectral density of order k, defined in L2:

fω1,...,ωk−1 (τ1, . . . ,τk ) = 1

(2π)k−1

∞∑
t1,...,tk−1=−∞

exp
(
− i

k−1∑
j=1

ω j t j

)
cum

(
X t1 (τ1), . . . , X tk−1 (τk−1), X0(τk )

)
.

In shorthand, we will write

fω1,...,ωk−1 =
1

(2π)k−1

∞∑
t1,...,tk−1=−∞

exp
(
− i

k−1∑
j=1

ω j t j

)
cum

(
X t1 , . . . , X tk−1 , X0

)
.

This density is well defined and is bounded under C(0, k). In fact, the con-
vergence of the series defining the higher order density can be described
explicitly as follows:

Lemma 3.3.2.
We have

fω1,...,ωk−1 =
1

(2π)k−1

T−1∑
t1,...,tk−1=−(T−1)

exp
(
− i

k−1∑
j=1

ω j t j

)
cum

(
X t1 , . . . , X tk−1 , X0

)+εT ,

where the equality is in L2. The error term is uniform in ω, and satisfies
εT ∼ o(1) as T →∞ under C(0,k). Under the stronger condition C(1,k) we
have εT ∼ o(T −1), as T →∞.

Proof. Direct consideration of the expression for fω1,...,ωk−1 yields that

|εT | ≤ 1

(2π)k−1

k−1∑
ν=1

 ∑
|tν|≥T

∑
u 6=ν

tu∈Z

∥∥cum
(
X t1 , . . . , X tk−1 , X0

)∥∥
2

 ,

and the estimates of the error follow directly. In particular, the error is
independent of the ω’s.

With regards to higher order moments, we may establish an asymptotic
representation of the cumulant kernel of the functional discrete Fourier
transform in terms of the cumulant spectral density of the same order:

Theorem 3.3.3.
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Let ∆(T )(ω) =∑T−1
t=0 exp(−iωt ). We have

T k/2 cum
(
X̃ (T )
ω1

(τ1), . . . , X̃ (T )
ωk

(τk )
)

= (2π)k/2−1∆(T )(ω1 +·· ·+ωk )fω1,...,ωk−1 (τ1, . . . ,τk )+εT , in L2,

where the error term is uniform in ω. In particular, εT ∼ o(T ) under C(0,k)
and εT ∼O(1) under C(1,k). Notice that in the case k = 1, f (τ) =µ(τ).

Proof. We have

cum
(
X̃ (T )
ω1

(τ1), . . . , X̃ (T )
ωk

(τk )
)= (2πT )−k/2

T−1∑
t1,...,tk=0

e−i
∑k−1

j=1 (t j−tk )ω j e−itk (ω1+···+ωk )

×cum
(
X t1−tk (τ1), . . . , X tk−1−tk , X0(τk )

)
With the change of variables t = tk ,u j = t j − tk for j = 1, . . . ,k − 1, and
defining h(T )(t ) = 1 if 0 ≤ t ≤ T, and 0 otherwise, we can re-express the last
expression as

(2πT )k/2cum
(
X̃ (T )
ω1

(τ1), . . . , X̃ (T )
ωk

(τk )
)

=
T−1∑

u1,...,uk−1=−(T−1)
e−i

∑k−1
j=1 u jω j cum

(
Xu1 (τ1), . . . , Xuk−1 , X0(τk )

)
× ∑

t∈Z
h(T )(u1 + t ) · · ·h(T )(uk−1 + t )h(T )(t )e−it (ω1+···+ωk )

=
T−1∑

u1,...,uk−1=−(T−1)
e−i

∑k−1
j=1 u jω j∆(T )

(
k∑

j=1
ω j

)
cum

(
Xu1 (τ1), . . . , Xuk−1 , X0(τk )

)+ε1,T ,

where ∆(T )(ω) =∑T−1
t=0 e−iωt . Now, ε1,T is an error term that we can bound

using Lemma 3.12.16:

∥∥ε1,T
∥∥≤ 2

T−1∑
u1,...,uk−1=−(T−1)

(|u1|+ · · ·+ |uk−1|)
∥∥cum

(
Xu1 , . . . , Xuk−1 , X0

)∥∥ .

Using the dominated convergence theorem, we find that ε1,T ∼ o(T ) under
the first mixing condition, and ε1,T ∼O(1) under the second one, in both
cases independently of ω. For the rest of the proof, we shall omit the τ j ’s.
Using Lemma 3.3.2, we have

T k/2cum
(
X̃ (T )
ω1

, . . . , X̃ (T )
ωk

)= (2π)k/2−1∆(T )

(
k∑

j=1
ω j

)
fω1,...,ωk−1

+ (2π)k/2−1∆(T )

(
k∑

j=1
ω j

)
ε2,T + (2π)−k/2ε1,T ,
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where ε2,T is the error term of Lemma 3.3.2. Since ∆(T ) is O(T ), we obtain
that the global error term is o(T ) (resp. O(1)) under the first (resp. second)
cumulant mixing condition.

By assuming summability of higher-order moments, we can show that the
fDFT is asymptotically Gaussian, with independent coordinates.

Theorem 3.3.4 (Asymptotic Distribution of the fDFT).
Let {X t }T−1

t=0 be a strictly stationary sequence of random elements of L2 ([0,1],R),
of length T . Assume the following conditions hold:

(i) E‖X0‖k
2 <∞,

(ii) C(0,k) holds for all k ≥ 2,

(iii)
∑

t∈Z |Tr(Rt )| <∞,

(iv) ω 7→ Tr(Fω) is continuous.

Then, for ω1,T :=ω1 = 0, ω2,T :=ω2 =π, and distinct integers

s3,T , . . . , s J ,T ∈ {1, . . . ,b(T −1)/2c}

such that

ω j ,T := 2πs j ,T

T
T→∞−→ ω j , j = 3, . . . J ,

we have

X̃ (T )
ω1

−
√

T

2π
µ

d−→ X̃ ω1 , as T →∞, (3.3.1)

and X̃ (T )
ω j ,T

d−→ X̃ ω j , as T →∞, j = 2, . . . , J where
{

X̃ ω j

}
are independent

mean zero Gaussian elements of L2 ([0,1],R) for j = 1,2, and of L2 ([0,1],C)
for j = 3, . . . , J . Their covariance operators are given by

E
[(

X̃ ω j −µ1{ j=1}

)
⊗2

(
X̃ ω j −µ1{ j=1}

)]
=Fω j ,

and for j = 3, . . . , J , their relation operator vanishes:

E
[

X̃ ω j ⊗2 X̃ ω j

]
= 0, j = 3, . . . , J .

Remark 3.3.5. Though the {ω j ,T }J
j=3 are distinct for every T , the limiting

frequencies {ω j : j = 3, ..., J } need not be distinct.

Condition (i i ) for k ≥ 3 is the generalisation of the standard multivariate
cumulant condition to the functional case (Brillinger 2001, Condition
2.6.1), and reduces to that condition if the data are finite-dimensional.
Conditions (i i ) for k = 2 and (i i i ) imply that the spectral density operator
is a nuclear operator at each ω, see Proposition 2.3.5. With Condition (i v),
these will imply the tightness of X̃ (T )

ω . A sufficient condition for (i i i ) and
(i v) is

∑
t∈Z |||Rt |||1 <∞.
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Proof of Theorem 3.3.4. Define p(T )
ω (τ,σ) = X̃ (T )

ω (τ)X̃ (T )
−ω(σ), and assume

initially that µ= 0. We will treat the case µ 6= 0 at the end of the proof. First
we show that for any sequence ωT , the sequence of random elements
X̃ (T )
ωT

,T = 1,2, . . . is tight. To do this, we shall use Lemma C.2.3. Fix an

orthonormal basis {ϕn}n≥1 of L2 ([0,1],R). We notice that p(T )
ωT

is a random

element of the Hilbert space L2
(
[0,1]2,C

)
, with E

∥∥∥p(T )
ωT

∥∥∥
2
<∞, and that

the projection Pn : L2
(
[0,1]2,R

) → C defined by Pn(h) = 〈
hϕn ,ϕn

〉
is

continuous and linear. Therefore,

E
∑

n≥N

∣∣〈X̃ (T )
ωT

,ϕn
〉∣∣2 = ∑

n≥N
EPn p(T )

ωT

= ∑
n≥N

Pn Ep(T )
ωT

= ∑
n≥N

Pn[(FT ∗F·)(ωT )]

= ∑
n≥N

(FT ∗ [PnF·](ωT ))

= (FT ∗ [
∑

n≥N
PnF·](ωT ))

≤ sup
α∈[−π,π]

∑
n≥N

〈
Fαϕn ,ϕn

〉
where FT is the Fejér kernel,

FT (ω) = 1

2πT

(
sin(Tω/2)

sin(ω/2)

)2

.

The third equality comes from Proposition 3.4.3 (which is independent
of previous results), the fourth equality follows from the continuity of the
convolution (see Section B.0.4.3), the fifth equality comes from the mono-
tone convergence Theorem, and the last inequality follows from Young’s
inequality (Hunter & Nachtergaele 2001, Theorem 12.58). Therefore,

sup
T≥1

E
∥∥X̃ (T )

ω

∥∥2 ≤ sup
α∈[−π,π]

∑
n≥1

〈
Fαϕn ,ϕn

〉
= sup
α∈[−π,π]

Tr(Fα)

≤ ∑
t∈Z

|Tr(Rt )|

<∞.

Furthermore, since the convergence of
∑

n≥1
〈
Fαϕn ,ϕn

〉
is uniform in

α, by Proposition 3.2.3, for all ε > 0, there is an N ′ > 0 such that for all
N > N ′, ∑

n≥N

〈
Fαϕn ,ϕn

〉< ε, α ∈ [−π,π].
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Therefore,

lim
N→∞

sup
T≥1

E
∑

n≥N

∣∣〈X̃ (T )
ω ,ϕn

〉∣∣2 ≤ lim
N→∞

sup
α∈[−π,π]

∑
n≥N

〈
Fαϕn ,ϕn

〉= 0,

and X̃ T
ω is tight by Lemma C.2.3. Consequently, the random element(

X̃ (T )
ω1,T

, . . . , X̃ (T )
ωJ ,T

)
∈

(
L2 ([0,1],C)

)J

is also tight. Its asymptotic distribution is therefore determined by the
convergence of its finite dimensional distributions (see e.g. Ledoux &
Talagrand (2011, Par. 2.1)). Thus, to complete the proof, it suffices to show
that for any ψ1, . . . ,ψJ ∈ L2 ([0,1],C),(〈

X̃ (T )
ω1,T

,ψ1

〉
, . . . ,

〈
X̃ (T )
ωJ ,T

,ψJ

〉)
d−→ (〈

X̃ ω1 ,ψ1
〉

, . . . ,
〈

X̃ ωJ ,ψJ
〉)

, (3.3.2)

where X̃ ω j ∼NH
(
0,Fω j

)
are independent random elements of H , where

H = L2 ([0,1],R) if j = 1,2 and H = L2 ([0,1],C) if j = 3, . . . , J .NH (·) is defined in

Section 3.12.1 on

page 134

. This is a
consequence of the following claim, which is justified by Brillinger (2001,
Theorem 4.4.1):

(I) For j = 1, . . . , J , letψ j =ϕ2 j−1+iϕ2 j , whereϕ1, . . . ,ϕ2J ∈ L2 ([0,1],R),
and let

Yt = (Yt (1), . . . ,Yt (2J )) ∈R2J

be the vector time series with coordinates Yt (l ) = 〈
X t ,ϕl

〉
. Then

Ỹ (T )
ω j ,T

d→ Ỹω j , where
{

Ỹω j

}
are independent mean zero complex

Gaussian random vectors with covariance matrix Fω j , (Fω j )sl :=
Fω j (s, l ) = 〈

Fω jϕl ,ϕs
〉

.

For the case µ 6= 0, we only need to consider j = 1,2, since â(X −µ) (T )
ω j ,T

=
X̃ (T )
ω j ,T

for j = 3, . . . , J . We need to show that

X̃ (T )
ω1

−
√

T

2π
µ= (2πT )−1/2

T−1∑
t=0

(X t −µ)
d→ X̃ 0, (3.3.3)

and also that

X̃ (T )
ω2

= (2πT )−1/2
T−1∑
t=0

(−1)t X t
d→ X̃ π. (3.3.4)

The weak convergence in (3.3.3) follows immediately from the case µ= 0.
For (3.3.4), notice that

X̃ (T )
ω2

= (2πT )−1/2
T−1∑
t=0

(−1)t (X t −µ)+µ(2πT )−1/2
T−1∑
t=0

(−1)t .

The first summand is the discrete Fourier transform of a zero mean ran-
dom process, and converges to X̃ ω2 . The second summand is determin-
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istic and bounded by
∥∥µ∥∥(2πT )−1/2, which tends to zero. Finally, the

continuous mapping Theorem for metric spaces (Pollard 1984) yields
(3.3.4).

We also remark that the weak convergence relation in equation (3.3.1) can
be re-expressed to trivially yield the corollary:

Corollary 3.3.6 (Central Limit Theorem for Cumulant Mixing Functional
Series). Let {X t }T

t=0 be a strictly stationary sequence of random elements of
L2 ([0,1],R) of length T satisfying conditions (i) and (ii) of Theorem 3.3.4.
Then,

p
T

(
1

T

T−1∑
t=0

X t (τ)−µ(τ)

)
d−→NL2([0,1],R)

(
0,

∑
t∈Z

Rt

)

This provides one of the first instances of central limit theorems for func-
tional series under no structural modeling assumptions beyond weak
dependence. To our knowledge, the only other similar result is given in
recent work by Horváth, Kokoszka & Reeder (2013), who obtain the same
limit under different mixing conditions, namely Lp -m-approximability.

3.4 The Periodogram Kernel and its Properties

Since the asymptotic covariance operator of the fDFT are equal to the
spectral density operators, it is natural to study properties of the empirical
covariance of the fDFT, which we call the periodogram:

Definition 3.4.1.
The periodogram kernel atω is the random element of L2([0,1]2,C) defined
by

p(T )
ω (τ,σ) = [

X̃ (T )
ω (τ)

][
X̃ (T )
ω (σ)

]† = X̃ (T )
ω (τ)X̃ (T )

−ω(σ), in L2.

The operator on L2 ([0,1],C) induced by this kernel through right integra-
tion will be called the periodogram operator, and denoted P (T )

ω .

We have
∥∥∥p(T )

ω

∥∥∥
2
=

∥∥∥X̃ (T )
ω

∥∥∥2

2
, and hence E

∥∥∥p(T )
ω

∥∥∥l

2
<∞, l ≥ 1. The expec-

tation of the periodogram kernel is thus well defined, and we have

Lemma 3.4.2.
Ep(T )

ω = T −1(a0 +·· ·+aT−1), where aT (τ,σ) =∑T
t=−T e−iωt rt (τ,σ).

Proof. Make the change of variables u = t − s, and observe that, by sta-
tionarity of X t ,

Ep(T )
ω (τ,σ) = T −1

T−1∑
u=−(T−1)

(T −|u|)e−iωuru(τ,σ),

which then yields the result.
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That is, the expectation of the periodogram kernel is a Cesàro-sum of the
partial sums of the series defining the spectral density kernel. Therefore,
in order to probe the properties of the periodogram kernel, we can make
use of the Fejér kernel

FT (ω) = 1

2πT

(
sin(Tω/2)

sin(ω/2)

)2

= 1

2πT
|∆(T )(ω)|2.

It will thus be useful to recall some properties of FT :
∫ π
−πFT = 2π,FT (0) =

T,FT (ω) ∼O(T ) uniformly in ω, and FT (2πs/T ) = 0 for s an integer with
s 6≡ 0 mod T. This last property will be used often.
The next proposition gives the mean of the periodogram kernel:

Proposition 3.4.3.
Assuming that C(0,2) holds true, we have, for each ω ∈R,

E
[
p(T )
ω (τ,σ)

]= 1

2π

∫ π

−π
FT (ω−α)fα(τ,σ)dα+µ(τ)µ(σ)FT (ω), in L2.

In particular, if ω= 2πs/T, with s an integer such that s 6≡ 0 mod T,

E
[
p(T )
ω (τ,σ)

]= 1

2π

∫ π

−π
FT (ω−α)fα(τ,σ)dα, in L2.

Proof. Using the definition of the periodogram operator,

Ep(T )
ω (τ,σ) = 1

2π
cov

(
X̃ (T )
ω , X̃ (T )

ω

)+ 1

2π
E
[

X̃ (T )
ω (τ)

]
E
[

X̃ (T )
−ω(σ)

]
= 1

2πT

T−1∑
s,t=0

e−iω(t−s)cov(X t (τ), Xs(σ))+ 1

2πT
µ(τ)µ(σ)|∆(T )(ω)|2

= 1

2πT

T−1∑
s,t=0

e−iω(t−s)rt−s(τ,σ)+µ(τ)µ(σ)FT (ω).

Using the inversion formula of Proposition 3.2.4, we obtain

Ep(T )
ω (τ,σ) = 1

2πT

T−1∑
s,t=0

e−iω(t−s)
∫ π

−π
e iα(t−s)fα(τ,σ)dα+µ(τ)µ(σ)FT (ω)

= 1

2πT

∫ π

−π

[
T−1∑
s,t=0

e−i(t−s)(ω−α)

]
︸ ︷︷ ︸

=|∆(T )(ω−α)|2

fα(τ,σ)dα+µ(τ)µ(σ)FT (ω)

= 1

2π

∫ π

−π
FT (ω−α)fα(τ,σ)dα+µ(τ)µ(σ)FT (ω).

For the case ω = 2πs/T, with s an integer with s 6≡ 0 mod T, the result
follows from the fact that FT (ω) = 0.

In particular, the periodogram kernel is asymptotically unbiased:
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Proposition 3.4.4.
Let s be an integer with s 6≡ 0 mod T . Then, we have

E
[

p(T )
2πs/T (τ,σ)

]
= f2πs/T (τ,σ)+εT , in L2.

The error term εT is o(1) under C(0,2) and O(T −1) under C(1,2). In either
case, the error term is uniform in integers s 6≡ 0 mod T .

Proof. Since s 6≡ 0 mod T ,

E
[

p(T )
2πs/T (τ,σ)

]
= cum

(
X̃ 2πs/T (τ), X̃ −2πs/T (σ)

)= f2πs/T (τ,σ)+εt ,

and the result follows from Theorem 3.3.3.

Notice that this result can also be proven using the fact that the Fejér ker-
nel is an approximate identity, see Proposition B.0.15. Having established
the mean structure of the periodogram, we turn to the determination of
its covariance structure.

Theorem 3.4.5.
Assume ω1 and ω2 are of the form 2πs(T )/T , where s(T ) is an integer,
s(T ) 6≡ 0 mod T . We have

cov
(
p(T )
ω1

(τ1,σ1), p(T )
ω2

(τ2,σ2)
)= η(ω1 −ω2)fω1 (τ1,τ2)f−ω1 (σ1,σ2)+

+η(ω1 +ω2)fω1 (τ1,σ2)f−ω1 (σ1,τ2)+εT , in L2,

where the function η(x) equals one if x ∈ 2πZ, and zero otherwise. The
error term εT is o(1) under C(0,2) and C(0,4); εT ∼ O(T −1) under C(1,2)
and C(1,4). In each case, the error term is uniform in ω1,ω2 of the form
2πs(T )/T with s(T ) 6≡ 0 mod T .

Proof. In this proof, in order to compactify notation, we will say that the

error term is
∣∣∣o(T )

O(1)
under assumption A/B, meaning that the error term is

of order o(T ) under condition A, and of order O(1) under condition B.
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Since

cov
(
p(T )
ω1

(τ1,σ1), p(T )
ω2

(τ2,σ2)
)= cov

(
X̃ (T )
ω1

(τ1)X̃ (T )
−ω1

(σ1), X̃ (T )
ω2

(τ2)X̃ (T )
−ω2

(σ2)
)

= E

X̃ (T )
ω1

(τ1)︸ ︷︷ ︸
A

X̃ (T )
−ω1

(σ1)︸ ︷︷ ︸
B

X̃ (T )
−ω2

(τ2)︸ ︷︷ ︸
C

X̃ (T )
ω2

(σ2)︸ ︷︷ ︸
D


− E

[
X̃ (T )
ω1

(τ1)X̃ (T )
−ω1

(σ1)
]
E
[

X̃ (T )
−ω2

(τ2)X̃ (T )
ω2

(σ2)
]

= E [ABC D]− E [AB ] E [C D],

using the notation (A) = cum(A) = EA, (A,B) = cum(A,B) , (A,B ,C ) =
cum(A,B ,C ) , and so on, and invoking Lemma 3.12.5, we deduce

cov
(
p(T )
ω1

(τ1,σ1), p(T )
ω2

(τ2,σ2)
)= (A,B ,C ,D)+

+ (A)(B ,C ,D)+ (B)(A,C ,D)+ (C )(A,B ,D)+ (D)(A,B ,C )

+ (A,C )(B ,D)+ (A,D)(B ,C )

+ (A)(C )(B ,D)+ (A)(D)(B ,C )+ (B)(C )(A,D)+ (B)(D)(A,C )

= (A,B ,C ,D)+ (A,C )(B ,D)+ (A,D)(B ,C ). (3.4.1)

The last equality comes from the fact that (A) = (B) = (C ) = (D) = 0, given
that ω1,ω2 are of the form 2πs(T )/T, with s(T ) 6≡ 0 mod T . We now ap-
proximate each term of (3.4.1) using Theorem 3.3.3:

(A,B ,C ,D) = 2π

T
fω1,−ω1,−ω2 (τ1,σ1,τ2,σ2)+T −2εT ,

where εT is the error term of Theorem 3.3.3. Thus (A,B ,C ,D) =O(T −1),
uniformly in ω under either C(0,4) or C(1,4).

For the next term, we have under the assumption C(1,2)/C(0,2):

(A,C )(B ,D) = T −2
{
∆(T )(ω1 −ω2)fω1 (τ1,τ2)+

∣∣∣o(T )

O(1)

}{
∆(T )(ω2 −ω1)f−ω1 (σ1,σ2)+

∣∣∣o(T )

O(1)

}
= T −2|∆(T )(ω1 −ω2)|2fω1 (τ1,τ2)f−ω1 (σ1,σ2)

+T −2∆(T )(ω1 −ω2)fω1 (τ1,τ2)
∣∣∣o(T )

O(1)

+T −2∆(T )(ω2 −ω1)f−ω1 (σ1,σ2)
∣∣∣o(T )

O(1)
+

∣∣∣o(1)

O(T −2)
.

Using the fact that ∆(T ) =O(T ), fω =O(1) uniformly in ω, we obtain

(A,C )(B ,D) = η(ω1 −ω2)fω1 (τ1,τ2)f−ω1 (σ1,σ2)+
∣∣∣o(1)

O(T −1)
,
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where the function η(x) equals one if x ∈ 2πZ, and zero otherwise. A
similar calculation yields

(A,D)(B ,C ) = η(ω1 +ω2)fω1 (τ1,σ2)f−ω1 (σ1,τ2)+
∣∣∣o(1)

O(T −1)

and in each of these cases, the error term is uniform in ω1,ω2 of the form
2πs(T )/T, with s(T ) 6≡ 0 mod T .
Piecing the results back together, we conclude that

cov
(
p(T )
ω1

(τ1,σ1), p(T )
ω2

(τ2,σ2)
)= η(ω1 −ω2)fω1 (τ1,τ2)f−ω1 (σ1,σ2)

+η(ω1 +ω2)fω1 (τ1,σ2)f−ω1 (σ1,τ2)+
∣∣∣o(1)

O(T −1)
,

with the error term being uniform in ω1,ω2 of the form 2πs(T )/T, with
s(T ) 6≡ 0 mod T .

3.5 Smoothing the Periodogram: The Sample Spectral

Density Operators

The results in the previous section show that the asymptotic covariance of
the periodogram is not zero, and hence, as for vector time series, the peri-
odogram kernel itself is not a consistent estimator of the spectral density.
In this section, we will see that we can nevertheless construct a consis-
tent class of estimators by smoothing the periodogram at neighboring
frequencies. The key idea is that although the periodogram is inconsis-
tent (because its asymptotic variance does not vanish), the asymptotic
variance of the periodogram operator is continuous in ω (under weak
dependence assumptions). Therefore, by taking local averages of the
periodogram, we can reduce the variance of the estimator while control-
ling the increased bias, so that the resulting estimators of the spectral
density operators are consistent. To give some intuition, let us explain
a bit in more detail this idea for estimating the spectral density opera-
tors in the context of univariate time series (Einstein 1914, Blackman &
Tukey 1959, Brillinger 2001, Bloomfield 2000, Priestley 2001, Percival &
Walden 1993, Fan & Yao 2003). The following paragraph is inspired by
Fan & Yao (2003). For univariate time series, the periodogram is given

by pω = (2πT )−1
∣∣∑T−1

t=0 e−iωt xt
∣∣2

, and is typically computed at the Fourier
frequencies ω j = 2π j /T , where j = 1, . . . ,T −1, both for computational
reasons (the Fast-Fourier Transform can be used to compute them with
O(T log(T )) complexity ; see, e.g., Cooley & Tukey (1965), Duhamel & Vet-
terli (1990)), and for statistical reasons (the variance is reduced at Fourier
frequencies; see the proof of Theorem 3.4.5). Therefore, estimation of the
spectral density operators can be viewed as a non-parametric functional
regression problem (Ferraty & Vieu 2006), where one wishes to estimate
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the spectral density operators using the scatter-plot(
ω j , pω j

)
, j = 1, . . . ,T −1.

Several approaches are possible. One can either smooth the periodogram,
or the log-periodogram, and for each of these approaches, a smoothing
technique, such as kernel/linear/polynomial smoothing, can be chosen.
Each of these techniques is based on a bandwidth parameter (or a param-
eter playing an equivalent role), which can be chosen globally (constant
inω) or locally. A global bandwidth is easy to implement, but is inefficient
if the spectral density operators are very variable. On the other hand, a
local bandwidth will adapt to varying spectral density operators, but the
choice of the bandwidth parameter and implementation will be more
complicated.
In this section, we choose to construct estimators of the spectral by
smoothing the periodogram operators using a kernel with a fixed band-
width.
Let W (x) be a real function defined on R such that

1. W is positive, even, and bounded in variation,

2. W (x) = 0 if |x| ≥ 1,

3.
∫ ∞
−∞W (x)dx = 1,

4.
∫ ∞
−∞W (x)2dx <∞.

The assumption of compact support is not necessary, but will simplify
proofs. For a bandwidth BT > 0, write

W (T )(x) = ∑
j∈Z

1

BT
W

(
x +2π j

BT

)
. (3.5.1)

Some properties of W can be found in Lemma 3.12.18. We define the
spectral density estimator f (T )

ω of fω at frequencyω as the weighted average
of the periodogram evaluated at frequencies of the form {2πs/T }T−1

s=1 , with
weight function W (T ):

f (T )
ω (τ,σ) = 2π

T

T−1∑
s=1

W (T )
(
ω− 2πs

T

)
p(T )

2πs
T

(τ,σ).

We also denote the operator induced by the kernel f (T )
ω by F (T )

ω . For
convenience, we might also refer to these objects as the sample spectral
density kernels and sample spectral density operators, respectively.
A consequence of the assumption of compact support worth mentioning
is that, in fact, at most O(T BT ) summands of this expression are non-
zero. We will show in this section that, under appropriate conditions
on the asymptotic behavior of BT , this estimator retains the property of
asymptotic unbiasedness that the periodogram enjoys. We will determine
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the behaviour of its asymptotic covariance structure and establish strong
consistency in mean square (with respect to the Hilbert–Schmidt norm).
Finally, we will determine the asymptotic law of the estimator.
Concerning the mean of the spectral density estimator, we have:

Proposition 3.5.1.
Under C(1,2), if BT → 0 and BT T →∞ as T →∞, then

E f (T )
ω (τ,σ) =

∫
R

W (x)fω−xBT (τ,σ)dx +O(B−1
T T −1),

where the equality holds in L2, and the error term is uniform in ω.

Proof. We use Proposition 3.4.4 to write

E f (T )
ω (τ,σ) = 2π

T

T−1∑
s=1

W (T )
(
ω− 2πs

T

){
f2πs(τ,σ)+O(T −1)

}
= 2π

T

T−1∑
s=1

W (T )
(
ω− 2πs

T

)
f2πs(τ,σ)+O(T −1)

{
2π

T

T−1∑
s=1

W (T )
(
ω− 2πs

T

)}
,

where the error term is uniform in s. Using Lemmas 3.12.15, 3.12.17 and
3.12.19, we obtain

2π

T

T−1∑
s=1

W (T )
(
ω− 2πs

T

)
f2πs(τ,σ) =

∫ 2π

0
W (T ) (ω−α) fα(τ,σ)dα+εT ,

where εT ∼O(B−1
T T −1), uniformly in ω. Using Lemma 3.12.19 again,

2π

T

T−1∑
s=1

W (T )
(
ω− 2πs

T

)
=O(1)

if BT T →∞. Combining these facts, we may write

E f (T )
ω (τ,σ) =

∫ 2π

0
W (T ) (ω−α) fα(τ,σ)dα+O(B−1

T T −1)+O(T −1).

With a change of variables, we obtain∫ 2π

0
W (T ) (ω−α) fαdα=

∫
R

W (x)fω−xBT d x.

This completes the proof.
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Concerning the covariance of the spectral density estimator, we have:

Theorem 3.5.2. Under C(1,2) and C(1,4),

cov
(
f (T )
ω1

(τ1,σ1), f (T )
ω2

(τ2,σ2)
)= 2π

T

∫ π

−π

{
W (T )(ω1 −α)W (T )(ω2 −α)fα(τ1,τ2)f−α(σ1,σ2)

+W (T )(ω1 −α)W (T )(ω2 +α)fα(τ1,σ2)f−α(σ1,τ2)
}

dα

+O(B−2
T T −2)+O(T −1),

where the equality holds in L2, and the error terms are uniform in ω.

Proof. Using Theorem 3.4.5, conditions C(1,2) and C(1,4), yield

cov
(
f (T )
ω1

(τ1,σ1), f (T )
ω2

(τ2,σ2)
)

= (2π/T )2
T−1∑
s,l=1

W (T )(ω1 −2πs/T )W (T )(ω2 −2πl/T )×

×
{
η(2π(s − l )/T )f 2πs

T
(τ1,τ2)f −2πs

T
(σ1,σ2)+

+η(2π(s + l )/T )f 2πs
T

(τ1,σ2)f −2πs
T

(σ1,τ2)+O(T −1)

}

=
[

2π

T

T−1∑
s=1

W (T )(ω1 −2πs/T )

]2

O(T −1)

+
(

2π

T

)2 T−1∑
s=1

W (T )(ω1 −2πs/T )W (T )(ω1 −2πs/T )f 2πs
T

(τ1,τ2)f −2πs
T

(σ1,σ2)

+
(

2π

T

)2 T−1∑
s=1

W (T )(ω1 −2πs/T )W (T )(ω1 +2πs/T )f 2πs
T

(τ1,σ2)f −2πs
T

(σ1,τ2),

where the error term is uniform in s, l . An application of Lemmas 3.12.15,
3.12.17, 3.12.18 and 3.12.19 now completes the proof.

Noting that ‖W (T )‖∞ =O(B−1
T ) and ‖f·‖∞ =O(1), a direct consequence of

the last result is the following approximation of the asymptotic covariance
of the spectral density estimator:

Corollary 3.5.3. Under C(1,2) and C(1,4),

cov
(
f (T )
ω1

(τ1,σ1), f (T )
ω2

(τ2,σ2)
)=O(B−2

T T −1),

where the equality holds in L2, uniformly in the ω’s.

This bound is not sharp. A better bound is given in the next statement,
which, however, is not uniform in ω.

Proposition 3.5.4.
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Assume conditions C(1,2), C(1,4) hold, and that BT → 0 and BT T →∞ as
T →∞. Then,

lim
T→∞

BT T cov
(
f (T )
ω1

(τ1,σ1), f (T )
ω2

(τ2,σ2)
)= 2π

∫
R

W (α)2dα×

×
{
η(ω1 −ω2)fω1 (τ1,τ2)f−ω1 (σ1,σ2)+η(ω1 +ω2)fω1 (τ1,σ2)f−ω1 (σ1,τ2)

}
,

where the function η(x) equals one if x ∈ 2πZ, and zero otherwise. The
convergence is in L2 for any fixed ω1,ω2. If ω1,ω2 depend on T , then the
convergence is in L2, provided (ω1 ±ω2) are at a distance of at least 2BT

from any multiples of 2π, if not exactly equal to a multiple of 2π.

Proof. Let d(x, y) denote the distance in R/2πZ. We shall abuse notation
and omit the (τ,σ)’s, for the sake of clarity. Theorem 3.5.2 yields

BT T cov
(
f (T )
ω1

, f (T )
ω2

)= 2πBT

∫ π

−π
W (T )(ω1 −ω2 −α)W (T )(α)fω2+αf−(ω2+α)dα

(3.5.2)

+2πBT

∫ π

−π
W (T )(ω1 +ω2 −α)W (T )(α)f−(ω2−α)fω2−αdα

(3.5.3)

+O(B−1
T T −1)+O(BT ).

We have employed a change of variables, the fact that W (T ) is even, and
the fact that both W (T ) and f· are 2π-periodic. Notice that the error terms
tend to zero as BT → 0,T BT →∞.

First we show that (3.5.2) tends to

η(ω1 −ω2)fω1 (τ1,τ2)f−ω1 (σ1,σ2)2π
∫
R

W (α)2dα, (3.5.4)

in L2, uniformly in allω1 =ω1,T ,ω2 =ω2,T such thatω1,T ≡ω2,T or d(ω1,T −
ω2,T ,0) ≥ 2BT for large T . If d(ω1 −ω2,0) ≥ 2BT , (3.5.2) is exactly equal to
zero. If ω1 ≡ω2, we claim that (3.5.2) tends to

fω(τ1,τ2)f−ω(σ1,σ2)2π
∫
R

W (α)2dα. (3.5.5)

Notice that in this case, (3.5.2) can be written as∫ π

−π
KT (α)fω+αf−(ω+α)dα×

{∫
R

W (α)2dα

}
,

where KT (α) = 2π
BT

[W (α/BT )]2
{∫
RW (α)2dα

}−1
is an approximate iden-

tity on [−π,π] (see Edwards (1967, §3.2)). Since the spectral density ker-
nel is uniformly continuous with respect to ‖·‖2 (see Proposition 3.2.4),
Lemma 3.12.21 implies that (3.5.2) tends indeed to (3.5.5) uniformly in ω
with respect to ‖·‖2. Hence (3.5.2) tends to (3.5.4) in ‖·‖2, uniformly in ω’s
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satisfying

ω1,T ≡ω2,T or d(ω1,T −ω2,T ,0) ≥ 2BT for large T.

Similarly, we may show that (3.5.3) tends to

η(ω1 +ω2)fω1 (τ1,σ2)f−ω1 (σ1,τ2)2π
∫
R

W (α)2dα,

uniformly inω’s ifω1,T ≡−ω2,T or d(ω1,T +ω2,T ) ≥ 2BT for large T . Piecing
these results together, we obtain the desired convergence, provided for
each T large enough, either ω1,T −ω2,T ≡ 0, ω1,T +ω2,T ≡ 0, or

d(ω1,T −ω2,T ,0) ≥ 2BT and d(ω1,T +ω2,T ,0) ≥ 2BT .

Remark 3.5.5. In practice, functional data are assumed to be smooth in ad-
dition to square-integrable. In such cases, one may hope to obtain stronger
results, for example with respect to uniform rather than L2 norms. Indeed,
if the conditions C(l,k) are replaced by the stronger conditions

C′(l,k):
∑

t1,...,tk−1∈Z
(1+|t j |l )

∥∥cum
(
X t1 , . . . , X tk−1 , X0

)∥∥∞ <∞, j = 1, . . . ,k−1,

then the results of Lemma 3.3.2, Theorem 3.3.3, Propositions 3.4.3, 3.4.4,
Theorem 3.4.5, Proposition 3.5.1, Theorem 3.5.2, Corollary 3.5.3, and Propo-
sition 3.5.4 hold in the supremum norm with respect to τ,σ.

3.6 Consistency and Asymptotic Normality of the Sam-

ple Spectral Density Operators

Combining the results on the asymptotic bias and variance of the spectral
density operator, we may now derive the consistency in the supremum
norm of the Hilbert–Schmidt distance for the sample spectral density
operators. Recall that Fω is the integral operator with kernel fω, and,
similarly let F (T )

ω be the operator with kernel f (T )
ω . We have:

Theorem 3.6.1.
Provided assumptions C(1,2) and C(1,4) hold, BT → 0, B 2

T T → ∞, the

spectral density operator estimator F (T )
ω is consistent in supremum norm,

with respect to the expected squared Hilbert–Schmidt norm, that is,

sup
ω∈[−π,π]

E
∣∣∣∣∣∣F (T )

ω −Fω

∣∣∣∣∣∣2
2 =O(B 2

T )+O(B−2
T T −1),

where |||·|||2 is the Hilbert–Schmidt norm.
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Proof. Notice that

E
∣∣∣∣∣∣F (T )

ω −Fω

∣∣∣∣∣∣2
2 = E

∣∣∣∣∣∣F (T )
ω − EF (T )

ω

∣∣∣∣∣∣2
2 +

∣∣∣∣∣∣Fω− EF (T )
ω

∣∣∣∣∣∣2
2,

which is essentially the usual bias/variance decomposition of the mean
square error. Initially, we focus on the variance term. Lemma C.1.3 yields

E
∣∣∣∣∣∣F (T )

ω − EF (T )
ω

∣∣∣∣∣∣2
2dω=

Ï
[0,1]2

var
(
f (T )
ω (τ,σ)

)
dτdσ.

Corollary 3.5.3 yields

E
∣∣∣∣∣∣F (T )

ω − EF (T )
ω

∣∣∣∣∣∣2
2 =O(B−2

T T −1),

where the error term is uniform in ω ∈ [−π,π]. Therefore,

sup
ω
E
∣∣∣∣∣∣F (T )

ω − EF (T )
ω

∣∣∣∣∣∣2
2 =O(B−2

T T −1).

Turning to the squared bias, Proposition 3.5.1 yields

∣∣∣∣∣∣Fω− EF (T )
ω

∣∣∣∣∣∣2
2 ≤ 3

∣∣∣∣∣∣∣∣∣∣∣∣{∫
R

W (x)fω−xBT dx − fω
}∣∣∣∣∣∣∣∣∣∣∣∣2

2
+O(T −2)+O(B−2

T T −2),

where the error terms are uniform in ω ∈ [−π,π]. We have used Jensen’s
inequality here, and

{∫
RW (x)fω−xBT dx − fω

}
denotes the operator with

kernel ∫
R

W (x)fω−xBT (τ,σ)dx − fω(τ,σ).

Lemma 3.12.13 implies that this difference is of order O(BT ), uniformly in
ω. Hence,

sup
ω

∣∣∣∣∣∣Fω− EF (T )
ω

∣∣∣∣∣∣2
2 =O(B 2

T )+O(B−2
T T −2).

In summary, we have

sup
ω∈[−π,π]

E
∥∥F (T )

ω −Fω

∥∥2 =O(B 2
T )+O(B−2

T T −1).

This implies of course that
∫ π
−π |||F (T )

ω −Fω|||22dω→ 0 at the rate O(B 2
T )+

O(B−2
T T −1). In fact, the rate under this integrated error criterion can be

slightly improved:

Theorem 3.6.2.
Provided assumptions C(1,2) and C(1,4) hold, BT → 0, BT T → ∞, the
spectral density operator estimator F (T )

ω is consistent in integrated mean
square, that is

IMSE(F (T )) =
∫ π

−π
E
∣∣∣∣∣∣F (T )

ω −Fω

∣∣∣∣∣∣2
2dω=O(B 2

T )+O(B−1
T T −1),
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where |||·|||2 is the Hilbert–Schmidt norm.

We also have pointwise mean square convergence for every fixedω ∈ [−π,π]:

E
∣∣∣∣∣∣F (T )

ω −Fω

∣∣∣∣∣∣2
2 =O(B 2

T )+O(B−1
T T −1),

as T →∞.

Proof. For a kernel operator K with a complex-valued kernel k(τ,σ), we
will denote by K the operator with kernel k(τ,σ). Let |||·|||2 be the Hilbert–

Schmidt norm. Proposition A.2.11 yields |||K |||2 =
∣∣∣∣∣∣∣∣∣K ∣∣∣∣∣∣∣∣∣

2
. Further, notice

that f−ω(τ,σ) = fω(τ,σ), hence F−ω =Fω. Similarly, F (T )
−ω =F (T )

ω . Thus,
via a change of variables, the IMSE of the spectral density estimator can
be written as

∫ π

−π
E
∣∣∣∣∣∣F (T )

ω −Fω

∣∣∣∣∣∣2
2dω= 2

∫ π

0
E
∣∣∣∣∣∣F (T )

ω −Fω

∣∣∣∣∣∣2
2dω

= 2
∫ π

0
E
∣∣∣∣∣∣F (T )

ω − EF (T )
ω

∣∣∣∣∣∣2
2dω+2

∫ π

0

∣∣∣∣∣∣Fω− EF (T )
ω

∣∣∣∣∣∣2
2dω,

which is essentially the usual bias/variance decomposition of the mean
square error. Initially, we focus on the variance term. Lemma C.1.3 yields∫ π

0
E
∣∣∣∣∣∣F (T )

ω − EF (T )
ω

∣∣∣∣∣∣2
2dω=

∫ π

0

Ï
[0,1]2

var
(
f (T )
ω (τ,σ)

)
dτdσdω.

Decomposing the outer integral into three terms,∫ π

0
=

∫ BT

0
+

∫ π−BT

BT

+
∫ π

π−BT

,

we can use Corollary 3.5.3 for the first and last summands, and Proposi-
tion 3.5.4 for the second summand to obtain∫ π

0
E
∣∣∣∣∣∣F (T )

ω − EF (T )
ω

∣∣∣∣∣∣2
2dω=O(B−1

T T −1).

Turning to the squared bias, Proposition 3.5.1 yields∫ π

0

∣∣∣∣∣∣Fω− EF (T )
ω

∣∣∣∣∣∣2
2dω

≤ 3
∫ π

0

∣∣∣∣∣∣∣∣∣∣∣∣{∫
R

W (x)fω−xBT dx − fω
}∣∣∣∣∣∣∣∣∣∣∣∣2

2
dω+O(T −2)+O(B−2

T T −2),

where we have used Jensen’s inequality and where{∫
R

W (x)fω−xBT dx − fω
}
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denotes the operator with kernel
∫
RW (x)fω−xBT (τ,σ)dx − fω(τ,σ).

Lemma 3.12.13 implies that this difference is of order O(BT ), uniformly in
ω. Hence,

3
∫ π

0

∣∣∣∣∣∣∣∣∣∣∣∣{∫
R

W (x)fω−xBT dx − fω
}∣∣∣∣∣∣∣∣∣∣∣∣2

2
dω≤O(B 2

T ).

In summary, we have∫ π

−π
E
∥∥F (T )

ω −Fω

∥∥2
dω≤O(B 2

T )+O(B−1
T T −1).

The spectral density estimator F (T )· is therefore consistent in integrated
mean square if BT → 0 and BT T →∞ as T →∞.

A careful examination of the proof reveals that the pointwise statement
of the Theorem follows from a directly analogous argument. Indeed, the
error term for the squared bias is uniform in ω. For the variance term,
Proposition 3.5.4 tells us that for any fixedω ∈ [−π,π], the Hilbert–Schmidt
norm of the variance term is of order O(B−1

T T −1), which completes the
proof.

Let us now study the asymptotic distribution of the sample spectral den-
sity operators. In order to do this, we first need a result that is analogue to
Proposition 3.5.4, but for the projections of the sample spectral density
operators. We introduce some notation that will be used hereafter. Let
(ϕn) be an orthonormal basis of L2 ([0,1],R). Then {ϕn ⊗2ϕm}n,m≥1 is an
orthonormal basis of the complex Hilbert space L2([0,1]2,C) (e.g. Kadison
& Ringrose (1997)). The representation of the spectral density operator
Fω in this basis will be called the spectral density matrix (it is an infinite
matrix in fact), and denoted by Φω. We denote by Φω(m,n) its (m,n)th

coordinate, i.e.
Φω(m,n) = 〈

Fωϕn ,ϕm
〉

.

We also define the periodogram matrix P (T )
ω (m,n) and the estimator of

the spectral density matrixΦ(T )
ω (m,n) as the scalar product of p(T )

ω , respec-
tively f (T )

ω , with ϕm ⊗2ϕn in the space HSL2 ([0,1],C).

Proposition 3.6.3.
For T large enough, we have the following bound:

∑
m,n≥1

T BT var
(
Φ(T )
ω (m,n)

)≤ 24‖W ‖2
∞ ·

[(∑
t∈Z

(1+|t |)|||Rt |||1
)2

+

+ ∑
t1,t2,t3∈Z

∣∣∣∣∣∣Rt1,t2,t3

∣∣∣∣∣∣
1

]
, (3.6.1)

Provided the terms on the right-hand side converge. Here, Rt1,t2,t3 is the
operator on L2

(
[0,1]2,C

)
defined in (3.2.3)
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Proof. Notice that

Φ(T )
ω (m,n) = 2π

T

T−1∑
s=1

W (T )(ω−2πs/T )P (T )
2πs/T (m,n),

where W (T ) is defined in (3.5.1). Furthermore, let ξt (m) = 〈
X t ,ϕm

〉
, and

define the k th-order cumulant spectra array Φω1,...,ωk−1 by

Φω1,...,ωk−1 (m1, . . . ,mk ) =
∫

[0,1]k
fω1,...,ωk−1 (τ1, . . . ,τk )ϕm1 (τ1) · · ·ϕmk (τk )dτ.

In other words, the k th-order cumulant spectra array is the scalar product
in L2([0,1]k ,C) between fω1,...,ωk−1 and ϕm1 ⊗·· ·⊗ϕmk .

The proof is divided into two parts:

(I) For T large enough, the following holds uniformly in n,m ≥ 1:

T BT var
(
Φ(T )
ω (m,n)

)≤ 8‖W ‖2
∞

[
sc0(m,n,m,n)+ sc1(m,m)sc1(n,n)

+ sc0(m,m)sc0(n,n)+ sc0(m,n)2
]

, (3.6.2)

where

sc0(m1, . . . ,mk ) = ∑
t1,...,tk−1∈Z

∣∣cum
(
ξt1 (m1), . . . ,ξtk−1 (mk−1),ξ0(mk )

)∣∣ ,

sc1(m1, . . . ,mk ) =
k−1∑
j=1

∑
t1,...,tk−1∈Z

|t j |
∣∣cum

(
ξt1 (m1), . . . ,ξtk−1 (mk−1),ξ0(mk )

)∣∣ .

(II) We have the following bound, for T large enough:

∑
m,n≥1

T BT var
(
Φ(T )
ω (m,n)

)≤ 24‖W ‖2
∞

[(∑
t∈Z

(1+|t |)|||Rt |||1
)2

+ ∑
t1,t2,t3∈Z

∣∣∣∣∣∣Rt1,t2,t3

∣∣∣∣∣∣
1

]
. (3.6.3)

Recall that Rt1,t2,t3 is the operator on L2
(
[0,1]2,C

)
with kernel

rt1,t2,t3 ((τ1,τ2), (τ3,τ4)) = cum
(
X t1 , X t2 , X t3 , X0

)
(τ1,τ2,τ3,τ4).

That is,

Rt1,t2,t3 f (τ1,τ2) =
Ï

[0,1]2
rt1,t2,t3 ((τ1,τ2), (τ3,τ4)) f (τ3,τ4)dτ3dτ4

for f ∈ L2([0,1]2,C).
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First we concentrate on establishing (3.6.2). Recall that

var
(
Φ(T )
ω (m,n)

)= (2π/T )2
T−1∑
s,l=1

W (T )(ω−2πs/T )W (T )(ω−2πl/T )

× cov

(
P (T )

2πs
T

(m,n),P (T )
2πl
T

(m,n)

)
We need to find an explicit bound on the error terms of Lemma 3.3.2, Theo-
rem 3.3.3, and Theorem 3.4.5. An examination of the proof of Lemma 3.3.2
yields

Φω1,...,ωk−1 (m1, . . . ,mk ) = (2π)−(k−1)
T−1∑

t1,...,tk−1=−(T−1)
exp

(
− i

k−1∑
j=1

ω j t j

)
×

× cum
(
ξt1 (m1), . . . ,ξtk−1 (mk−1),ξ0(mk )

)+
+ ε(3.3.2)

T (m1, . . . ,mk ),

and
∣∣∣ε(3.3.2)

T (m1, . . . ,mk )
∣∣∣≤ (2π)−(k−1)(k −1) sc0(m1, . . . ,mk ). We have used

the notation ε(3.3.2)
T (m1, . . . ,mk ) to denote the error term of Lemma 3.3.2,

and we shall do likewise for the error term in Theorem 3.3.3:

T k/2cum
(
ξ̃ (T )
ω1

(m1), . . . , ξ̃ (T )
ωk

(mk )
)= (2π)k/2−1∆(T )

(
k∑

j=1
ω j

)
Φω1,...,ωk−1 (m1, . . . ,mk )

+ ε(3.3.3)
T

(
k∑

j=1
ω j ;m1, . . . ,mk

)
,

where

∣∣∣ε(3.3.3)
T (ω;m1, . . . ,mk )

∣∣∣≤ 2(2π)−k/2
T−1∑

t1,...,tk−1=−(T−1)
(|t1|+ · · ·+ |tk−1|)

∣∣cum
(
ξt1 (m1), . . . ,ξtk−1 (mk−1),ξ0(mk )

)∣∣
+ (2π)k/2−1∆(T ) (ω)

∣∣∣ε(3.3.2)
T (m1, . . . ,mk )

∣∣∣
≤ 2 (2π)−k/2 sc1(m1, . . . ,mk )+ (2π)−k/2(k −1)∆(T ) (ω) sc0(m1, . . . ,mk ).

A less sharp bound (but independent of the frequency) will also be useful:∣∣∣ε(3.3.3)
T (·;m1, . . . ,mk )

∣∣∣≤ 3 (2π)−k/2(k −1)T sc0(m1, . . . ,mk ).

We will also need a bound on the spectral density matrix:∣∣Φω1,...,ωk−1 (m1, . . . ,mk )
∣∣≤ (2π)−(k−1) sc0(m1, . . . ,mk ).
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We now turn to Theorem 3.4.5: for s, l = 1, . . . ,T −1,

cov

(
P (T )

2πs
T

(m,n),P (T )
2πl
T

(m,n)

)
= (2π/T )Φ 2πs

T ,− 2πs
T , 2πl

T
(m,n,m,n)+T −2ε(3.3.3)

T (·;m,n,m,n)

+ δs,l

[
Φ 2πs

T
(m,m)Φ− 2πs

T
(n,n)+Φ 2πs

T
(m,m)T −1ε(3.3.3)

T (·;n,n)

+ Φ− 2πs
T

(n,n)T −1ε(3.3.3)
T (·;m,m)

]
+ δs+l ,T

[
Φ 2πs

T
(m,n)Φ− 2πs

T
(n,m)+Φ 2πs

T
(m,n)T −1ε(3.3.3)

T (·;n,m)

+ Φ− 2πs
T

(n,m)T −1ε(3.3.3)
T (·;m,n)

]
+ T −2

[
ε(3.3.3)

T

(
2π(s − l )

T
;m,m

)
ε(3.3.3)

T

(
−2π(s − l )

T
;n,n

)

+ ε(3.3.3)
T

(
2π(s + l )

T
;m,n

)
ε(3.3.3)

T

(
−2π(s + l )

T
;n,m

)]
,

where δs,l = 1 if s = l , and zero otherwise. Using the previous bounds, and
the fact that sc0(m,n) = sc0(n,m), we obtain

∣∣∣∣cov

(
P (T )

2πs
T

(m,n),P (T )
2πl
T

(m,n)

)∣∣∣∣≤ 1

4π2

[
4T −2sc1(m,m)sc1(n,n)+10T −1 sc0(m,n,m,n)

+8δs,l sc0(m,m)sc0(n,n)+8δs+l ,T sc0(m,n)2] ,

and hence

T BT
∣∣var

(
Φ(T )
ω (m,n)

)∣∣ (3.6.4)

≤ BT

[
T −1

T−1∑
s=1

W (T )(ω−2πs/T )

]2 [
4T −1sc1(m,m)sc1(n,n)+10 sc0(m,n,m,n)

]
+8 sc0(m,m)sc0(n,n) BT T −1

T−1∑
s=1

(W (T )(ω−2πs/T ))2 (3.6.5)

+8 sc0(m,n)2 BT T −1
T−1∑
s=1

W (T )(ω−2πs/T )W (T )(ω+2πs/T ). (3.6.6)

Since at most T BT
π +1 of the summands are non-zero, and∥∥W (T )

∥∥∞ ≤ B−1
T ‖W ‖∞

(see Lemma 3.12.18), we obtain[
T −1

T−1∑
s=1

W (T )(ω−2πs/T )

]2

≤π−2‖W ‖2
∞,
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and

BT T −1
T−1∑
s=1

(W (T )(ω−2πs/T ))2 ≤π−1‖W ‖2
∞,

for large T . Similarly∣∣∣∣∣BT T −1
T−1∑
s=1

W (T )(ω−2πs/T )W (T )(ω+2πs/T )

∣∣∣∣∣≤π−1‖W ‖2
∞

for large T . Since BT → 0, for T large enough, we have the following,
uniformly in n,m ≥ 1:

T BT
∣∣var

(
Φ(T )
ω (m,n)

)∣∣≤ ‖W ‖2
∞ · [sc0(m,n,m,n)+ sc1(m,m)sc1(n,n)

+ 8sc0(m,m)sc0(n,n)+8sc0(m,n)2],

and (3.6.2) follows immediately.
To prove (3.6.3), notice that, for large T , inequality (3.6.2) gives us

∑
m,n≥1

T BT var
(
Φ(T )
ω (m,n)

)≤ 8‖W ‖2
∞

[ ∑
m,n≥1

sc0(m,n,m,n)+
( ∑

m≥1
sc1(m,m)

)2

+

+
( ∑

m≥1
sc0(m,m)

)2

+ ∑
m,n≥1

sc0(m,n)2

]

Notice that

cum
(
ξt1 (m),ξt2 (n),ξt3 (m),ξ0(n)

)= 〈
Rt1,t2,t3ϕm ⊗2ϕn ,ϕm ⊗2ϕn

〉
,

so ∑
m,n≥1

sc0(m,n,m,n) ≤ ∑
t1,t2,t3∈Z

∣∣∣∣∣∣Rt1,t2,t3

∣∣∣∣∣∣
1.

We also have cum(ξt (m),ξ0(n)) = 〈
Rtϕn ,ϕm

〉
, hence∑

m≥1
sc0(m,m) ≤ ∑

t∈Z
|||Rt |||1.

Using the Cauchy-Schwarz inequality and Parseval’s identity, we also
obtain ∑

m,n≥1
sc0(m,n)2 ≤

(∑
t∈Z

|||Rt |||1
)2

.

Similarly, ∑
m,n≥1

sc1(m,m)sc1(n,n) ≤
(∑

t∈Z
|t ||||Rt |||1

)2

.

Inequality (3.6.3) follows, and the proof is finished.

We automatically get the following corollary, that gives sufficient condi-
tions for the convergence in distribution of the sample spectral density
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operators.

Corollary 3.6.4. If∑
t∈Z

(1+|t |)|||Rt |||1 <∞ and
∑

t1,t2,t3∈Z

∣∣∣∣∣∣Rt1,t2,t3

∣∣∣∣∣∣
1 <∞, (3.6.7)

the sequence of random elements(√
T BT (F (T )

ω − EF (T )
ω )

)
T=1,2,...

⊂S2(H)

is tight in S2(H ). In particular, if under some assumptions A, and for some
random element G of S2(H), we have〈√

T BT (F (T )
ω − EF (T )

ω ),ϕ
〉
S2

d−→ 〈
G ,ϕ

〉
S2

, ϕ ∈S2(H),

then A and (3.6.7) imply that

√
T BT (F (T )

ω −F (T )
ω )

d−→G , in S2(H).

Proof. Since

E
∣∣∣〈√

T BT

(
f (T )
ω j

− E f (T )
ω j

)
,ϕm ⊗2ϕn

〉∣∣∣2 = T BT var
(
Φ(T )
ω (m,n)

)
,

An application of Lemma C.2.3 and the previous Proposition yields the
result.

Finally, we may obtain the asymptotic distribution of our estimator as
being Gaussian, if we include some higher-order cumulant mixing condi-
tions.

Theorem 3.6.5.

Assume that E‖X0‖k <∞ for all k ≥ 2 and

(i)
∑∞

t1,...,tk−1=−∞
∥∥cum

(
X t1 , . . . , X tk−1 , X0

)∥∥
2 <∞, for all k ≥ 2,

(i’)
∑∞

t1,...,tk−1=−∞(1+|t j |)
∥∥cum

(
X t1 , . . . , X tk−1 , X0

)∥∥
2 <∞, for k ∈ {2,4} and

j < k,

(ii)
∑

t∈Z(1+|t |)|||Rt |||1 <∞,

(iii)
∑

t1,t2,t3∈Z
∣∣∣∣∣∣Rt1,t2,t3

∣∣∣∣∣∣
1 <∞,

Then, for any frequencies ω1, . . . ,ωJ , with J <∞, if BT → 0 and T BT →∞,

√
BT T

(
f (T )
ω j

− E f (T )
ω j

)
d−→ f̆ω j , j = 1, . . . , J ,
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where f̆ω j , j = 1, . . . , J are jointly mean zero complex Gaussian elements in
L2

(
[0,1]2,C

)
, with covariance kernel

cov
(
f̆ωi (τ1,σ1), f̆ω j (τ2,σ2)

)
= 2π

∫
R

W (α)2dα×

× {
η(ωi −ω j )fωi (τ1,τ2)f−ωi (σ1,σ2)+η(ωi +ω j )fωi (τ1,σ2)f−ωi (σ1,τ2)

}
.

In particular, we see that f̆ωi and f̆ω j are independent ifωi±ω j 6≡ 0 mod 2π,

and f̆ω is real Gaussian if ω≡ 0 mod π.

Notice that the limiting random elements f̆ω are entirely determined

by their covariance operators E
[
F̆ω⊗2 F̆ω

]
and their relation operator

E
[
F̆ω⊗2 F̆ω

]
, see Section 3.12.1

Proof of Theorem 3.6.5. By Corollary 3.6.4, we know that the rescaled sam-
ple spectral density operator√

T BT

(
f (T )
ω j

− E f (T )
ω j

)
is tight. Therefore the vector√

T BT

(
f (T )
ω1

− E f (T )
ω1

, . . . , f (T )
ωJ

− E f (T )
ωJ

)
is also tight in

(
L2

(
[0,1]2,C

))J
. Applying Brillinger (2001, Theorem 7.4.4) to

the finite dimensional distributions of this vector completes the proof.

Condition (i i ) guarantees that ω 7→Fω is continuous with respect to the
nuclear norm. If in addition we want it to be continuous in continuous in
τ,σ, we need to assume the stronger conditions

∑
t∈Z ‖rt‖∞ <∞ and that

each rt is continuous.

Remark 3.6.6. It can be useful to write the second-order structure of the
random element F̆ω using Kronecker product notation; indeed, this re-
veals the structure of the random element if H is taken to be an abstract
complexified separable Hilbert space. If ω ∈ (0,π), then F̆ω is a complex
Gaussian random element. Using results from Section A.3.4, we get that its
covariance operator can be written

E
[
F̆ω⊗2 F̆ω

]
= κ2 ·Fω

⊗̃
2 Fω, ω ∈ (0,π), (3.6.8)

and its relation operator can be written

E
[
F̆ω⊗2 F̆ω

]
= κ2 ·Fω

⊗̃
TFω, ω ∈ (0,π), (3.6.9)

If ω ∈ {0,π} , F̆ω is a real Gaussian random element with covariance opera-
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tor

E
[
F̆ω⊗2 F̆ω

]
= κ2 · [C

⊗̃
2 C +C

⊗̃
TC ], ω ∈ {0,π} (3.6.10)

where κ2 = 2π
∫
RW (x)2d x.

We have seen that for the sample spectral density operators to be asymp-
totically Gaussian around their mean, we need to smooth at a rate BT → 0
slow enough such that T BT →∞. If we furthermore assume that T B 3

T → 0
(which can be understood as BT → 0 fast enough), the sample spectral
density operators are asymptotically Gaussian around the true spectral
density operators:

Theorem 3.6.7.

Under the conditions of Theorem 3.6.5, for any frequencies ω1, . . . ,ωJ , with
J <∞, if BT → 0, T BT →∞ and T B 3

T → 0,

√
BT T

(
f (T )
ω j

− fω j

)
d−→ f̆ω j , j = 1, . . . , J ,

where f̆ω j , j = 1, . . . , J are jointly mean zero complex Gaussian elements in
L2

(
[0,1]2,C

)
, with covariance kernel

cov
(
f̆ωi (τ1,σ1), f̆ω j (τ2,σ2)

)
= 2π

∫
R

W (α)2dα×

× {
η(ωi −ω j )fωi (τ1,τ2)f−ωi (σ1,σ2)+η(ωi +ω j )fωi (τ1,σ2)f−ωi (σ1,τ2)

}
.

In particular, we see that f̆ωi and f̆ω j are independent ifωi±ω j 6≡ 0 mod 2π,

and f̆ω is real Gaussian if ω≡ 0 mod π.

Again, notice that the limiting random elements f̆ω are entirely determined

by their covariance operators E
[
F̆ω⊗2 F̆ω

]
and their relation operator

E
[
F̆ω⊗2 F̆ω

]
, see Section 3.12.1.

Proof. Write√
T BT

(
F (T )
ω −Fω

)=√
T BT

(
F (T )
ω − EF (T )

ω

)︸ ︷︷ ︸
(i )

+
√

T BT
(
EF (T )

ω −Fω

)︸ ︷︷ ︸
(i i )

.

The term (i ) converges in distribution to F̆ω, jointly for ωs satisfying
the condition of the Theorem, and the limiting random elements are
independent (see Theorem 3.6.5). For (i i ), earlier results yield

EFω =
∫
R

W (x)fω−αBT dα+O([T BT ]−1) =Fω+O(BT )+O([T BT ]−1),
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uniformly in τ,σ, and hence

√
T BT

∣∣∣∣∣∣EF (T )
ω −Fω

∣∣∣∣∣∣
2 =O

(√
T B 3

T

)
+O([T BT ]−1/2),

which converges to zero under the conditions of the Theorem. The proof
is finished by applying Slutsky’s lemma.

When ω= 0, the operator 2πFω reduces to the long-run covariance op-
erator

∑
t∈ZRt , the limiting covariance operator of the empirical mean.

Correspondingly, 2πF (T )
0 is an estimator of the long-run covariance op-

erator that is consistent in mean square for the long-run covariance, un-
der no structural modeling assumptions. A similar estimator was also
considered in Horváth, Kokoszka & Reeder (2013), who derived weak
consistency under L4-m-approximability weak dependence conditions.
Hörmann & Kokoszka (2010) studied this problem by projecting onto
a finite-dimensional subspace. However, neither of these papers con-
sider functional central limit theorems for the estimator of the long-run
covariance operator; taking ω = 0, in Theorem 3.6.5, we obtain such a
result:

Corollary 3.6.8. Under the conditions of Theorem 3.6.5, we have

√
BT T

(
2πF (T )

0 −2πF0

)
d−→N

(
0,(2π)3/2‖W ‖2

2C
)

,

where C is the integral operator on L2([0,1]2,R) with kernel

c(τ1,σ1,τ2,σ2) = {
f0(τ1,τ2)f0(σ1,σ2)+ f0(τ1,σ2)f0(σ1,τ2)

}
.

We remark that the limiting Gaussian random operator is purely real.

3.7 Estimation of the Eigenstructure of

the Spectral Density Operators

Now that we have seen that the sample spectral density operators are
consistent and asymptotically Gaussian estimators of the spectral density
operators, we shall study the asymptotic behavior of their eigenstructure.

3.7.1 Basic definitions

Before stating our results concerning the asymptotic distribution of the
estimators of the eigenvalues/eigenfunctions, we need to introduce some
necessary notation. For any ω ∈ [0,π], let

F (T )
ω =

∞∑
i=1

µi ,T (ω)ϕωi ,T ⊗2ϕ
ω
i ,T
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be the singular value decomposition of F (T )
ω , and recall that

Fω =
∞∑

i=1
µi (ω)ϕωi ⊗2ϕ

ω
i

is the singular decomposition of Fω. For any fixed ω, {µi ,T (ω)}i≥1 and
{µi (ω)}i≥1 are non-increasing positive sequences tending to zero. We
denote by {λi (ω)}i≥1 the decreasing sequence of distinct elements of
{µi (ω)}i≥1, define the sets

Ik (ω) = {i ≥ 1 :µi (ω) =λk (ω)}, k ≥ 1,

and we denote its cardinality by mk (ω) = |Ik (ω)|. We will also write

I (ω) = {
i ≥ 1 :µi (ω) > 0

}= ⋃
k≥1&λk (ω)>0

Ik (ω) (3.7.1)

which is the set of indices of the repeated non-zero eigenvalues of Fω.
Notice that the sets I j (ω) satisfy

k < l =⇒ Ik (ω) < Il (ω),

and that
I (ω) = J (ω) = {1,2,3, . . .}

unless Fω is of finite rank, in which case

{λi (ω)}i≥1 = {λ1(ω), . . . ,λN (ω)} ,

where N −1 = rank(Fω) and λN (ω) = 0. Furthermore, mN (ω) = |IN (ω)| =
∞. We can now define, for k ∈ J (ω),

Πk (ω) = ∑
i∈Ik (ω)

ϕωi ⊗2ϕ
ω
i ,

which is the projection onto the kth eigenspace of Fω. This way,

Fω = ∑
j∈J (ω)

λ j (ω)Π j (ω).

The estimator of Πk (ω) is defined by

Πk,T (ω) = ∑
i∈Ik (ω)

ϕωi ,T ⊗2ϕ
ω
i ,T .

We also define

Sk (ω) = ∑
j∈J (ω): j 6=k

(λk (ω)−λ j (ω))−1Π j (ω), k ∈ J (ω). (3.7.2)



3.7 ESTIMATION OF THE EIGENSTRUCTURE 101

Notice that the sum is over all j 6= k such that λ j (ω) 6= 0. We define the
operator

ηωk = Sk (ω)
⊗̃

2 Πk (ω)+Πk (ω)
⊗̃

2 Sk (ω), k ∈ J (ω), (3.7.3)

which belongs to S∞(S2(H)), and the bounded operator pω
k : S2(H) →C

by
pω

k (A) = 〈A,Πk (ω)〉S2
, ω ∈ J (ω). (3.7.4)

Notice that if A ∈ S2(H) is a self-adjoint operator, then pω
k (A) ∈ R. The

following Lemma establishes that ηωk is indeed a bounded operator.

Lemma 3.7.1.

Letting δk (ω) = min(λk (ω)−λk+1(ω),λk−1(ω)−λk (ω)) , we have∣∣∣∣∣∣ηωk ∣∣∣∣∣∣
∞ = δ−1

k (ω) <∞, k ∈ J (ω).

Proof. We omit writing ω to simplify the notation.

Letting A =∑∞
j∈J (ω); j 6=k α j kϕ j ⊗2ϕk ∈S2(L2 ([0,1],C)),

ηk A = ∑
j∈J (ω); j 6=k

α j k (λk−λ j )−1ϕ j ⊗2ϕk+
∑

j∈J (ω); j 6=k
αk j (λk−λ j )−1ϕk ⊗2ϕ j ,

thus ∣∣∣∣∣∣ηk A
∣∣∣∣∣∣2

2 =
∑

j∈J (ω); j 6=k

|αk j |2 +|α j k |2(
λk −λ j

)2 ≤ |||A|||22/δ2
k ,

with equality if we choose the αk j and α j k properly.

3.7.2 Consistency

The following proposition establishes the consistency of the sample eigen-
values and sample eigenprojectors.

Proposition 3.7.2.

Under C(1,2) and C(1,4),

sup
ω∈[−π,π]

E

[
sup

i∈I (ω)
|µi ,T (ω)−µi (ω)|2

]
=O(B 2

T )+O(B−2
T T −1),

∫ π

−π
E

[
sup

i∈I (ω)
|µi ,T (ω)−µi (ω)|2

]
dω=O(B 2

T )+O(B−1
T T −1).

Furthermore, for each j ∈ J (ω), and each ω ∈ [−π,π],∣∣∣∣∣∣Π j ,T (ω)−Π j (ω)
∣∣∣∣∣∣

2

p→ 0. (3.7.5)

if T BT →∞, BT → 0.
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Proof. Using Proposition A.2.4, we get

sup
i∈I (ω)

|µi ,T (ω)−µi (ω)|2 < ∣∣∣∣∣∣F (T )
ω −Fω

∣∣∣∣∣∣2
2

and therefore the first two statements follow from Theorems 3.6.1 and
3.6.2.

The proof of (3.7.5) is based on the “linear approximation” of the differ-
ence between the eigenprojector, found in Mas & Menneteau (2003). We
fix ω and write Π j instead of Π j (ω), and similarly for η j ,λ j , to ease the
notation. Mas & Menneteau (2003) yields

Π j ,T −Π j = η j
(
F (T )
ω −Fω

)+ r j ,T ,

where η j = ηωj has been defined in (3.7.3), and the remainder term ri ,T

satisfies ∣∣∣∣∣∣r j ,T 1O j ,T

∣∣∣∣∣∣
2
≤ 8

δ2
j

∣∣∣∣∣∣F (T )
ω −Fω

∣∣∣∣∣∣
2, (3.7.6)

with O j ,T =
{∣∣∣∣∣∣∣∣∣F (T )

ω −Fω

∣∣∣∣∣∣∣∣∣
2
< δ j /4

}
and δ j = min

(
λ j −λ j+1,λ j−1 −λ j

)
.

The operatorη j is continuous, with operator norm 1/δi (See Lemma 3.7.1),
hence

E
∣∣∣∣∣∣η j

(
F (T )
ω −Fω

)∣∣∣∣∣∣2
2 → 0.

We now turn to the remainder term:

r j ,T = r j ,T 1O j ,T + r j ,T 1Oc
j ,T

.

From (3.7.6), the first term converges in probability to zero. For the second
term,

P
(∣∣∣∣∣∣∣∣∣r j ,T 1Oc

j ,T

∣∣∣∣∣∣∣∣∣
2
> ε

)
≤P

(
Oc

j ,T

)
→ 0, for any ε> 0,

therefore Π j ,T
p−→Π j as T →∞.

The results of this proposition are stronger for the eigenvalues of the
sample spectral density operators than for its eigenprojectors. This is
compatible with our intuition, since eigenprojections are less stable to
perturbations compared to eigenvalues.

3.7.3 Asymptotic Normality

Assuming some decay of the higher order moments, we can show that
the asymptotic distribution of the eigenvalues and eigenprojectors of the
sample spectral density operators are Gaussian:

Theorem 3.7.3.
Let ω1, . . . ,ωK ∈ [0,π] be distinct, K <∞. Let Li ⊂ J(ωi ), be a set of cardi-
nality |Li | <∞, for i = 1, . . . ,K .
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Provided the conditions of Theorem 3.6.5 hold, and BT → 0 such that
T BT →∞ and T B 3

T → 0, then

√
T BT {Π j ,T (ωi )−Π j (ωi ) : j ∈ Li }

d→ η
ωi
Li

(F̆ωi ), i = 1, . . . ,K .

and

√
T BT

{ ∑
s∈I j (ωi )

[µs,T (ωi )−λ j (ωi )] : j ∈ Li

}
d→ pωi

Li
(F̆ωi ), i = 1, . . . ,K .

The limiting random elements {ηωi
Li

(F̆ωi )}i=1,...,K and {pωi
Li

(F̆ωi )}i=1,...,K are
all independent Gaussian random elements with mean zero. In particular,

the random elements ηωi
Li

(
F̆ωi

)
are complex, but the variables pωi

Li

(
F̆ωi

)
are real. Their covariances are given by the following formulas, in which
we have written λk instead of λk (ω) for clarity, and similarly for Πk ,ϕk ,

E
[
ηωk (F̆ω)

⊗
2η

ω
l (F̆ω)

]
=

−κ2λkλl (λk −λl )−2
[
Πk

⊗̃
2 Πl +Πl

⊗̃
2 Πk + Aω

kl +
(

Aω
kl

)†
]

, k 6= l ;

κ2 ∑
s∈J\{k}λkλs(λk −λs)−2

[
Πk

⊗̃
2 Πs +Πs

⊗̃
2 Πk + Aω

ks +
(

Aω
ks

)†
]

, k = l ,

(3.7.7)

where κ2 = 2π
∫
RW (x)2d x, Aω

ks = 1{0,π}(ω) ·Πk (ω)
⊗̃

TΠs(ω). The relation

operator of F̆ω, for ω ∈ (0,π), is given by

E
[
ηωk (F̆ω)

⊗
2η

ω
l (F̆ω)

]
=

−κ2λkλl (λk −λl )−2
[
Πk

⊗̃
TΠl +Πl

⊗̃
TΠk

]
if k 6= l ;

κ2 ∑
s∈J\{k}λkλs(λk −λs)−2

[
Πk

⊗̃
TΠs +Πs

⊗̃
TΠk

]
if k = l .

(3.7.8)

The covariance of the sample eigenvalues is given by

cov
(
pω

l (F̆ω), pω
k (F̆ω)

)
= (

1+1{0,π}(ω)
)
κ2δlkλ

2
l ml ,

where κ2 = 2π
∫
RW 2(x)d x.

Notice that the estimators of the eigenspaces are not asymptotically in-
dependent, which is expected since they are constrained to be mutually
orthogonal.
Before turning to the proof of the Theorem, let us illustrate the above
expression of the covariance by an example. Letω ∈ (0,π), L = {1}, m1(ω) =
1, and let

C = E
[
ηω1 (F̆ω)

⊗
2η

ω
1 (F̆ω)

]
denote the covariance operator of ηω1 (F̆ω).
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If ψi ,ψ j ,ψk ,ψl ∈ L2 ([0,1],C), we have

〈
C

(
ψi ⊗2ψ j

)
,ψk ⊗2ψl

〉
S2

= κ2
∑

s∈J (ω)\{1}

λ1λs

(λs −λ1)2

[〈
ϕ1,ψl

〉〈
ψi ,ϕ1

〉〈
ϕs ,ψ j

〉〈
ψk ,ϕs

〉+
+〈

ϕs ,ψl
〉〈
ψ j ,ϕs

〉〈
ϕ1,ψ j

〉〈
ψk ,ϕ1

〉]
,

where we wrote Πs(ω) =ϕs ⊗2ϕs , λ j =λ(ω). In particular, the variance of〈
ηω1 (F̆ω)ψi ,ψ j

〉
is given by

〈
C

(
ψi ⊗2ψ j

)
,ψi ⊗2ψ j

〉
S2

= κ2
∑

s∈J (ω)\{1}

λ1λs

(λs −λ1)2

[
|〈ϕ1,ψi

〉〈
ϕs ,ψ j

〉|2 +|〈ϕs ,ψi
〉〈
ϕ1,ψ j

〉|2].

(3.7.9)

Proof of Theorem 3.7.3. The proof rests on the adaptation of Theorem
1.3 of Mas & Menneteau (2003) to our case (we want the convergence
in distribution of the sample eigenvalues and eigenprojectors, jointly
in a finite number of frequencies), and therefore we give only a sketch.
For l ≥ 1, we denote by S l the l-fold product space S2(H)×·· ·×S2(H),
equipped with the norm

‖(A1, . . . , Al )‖S l = max
j=1,...,l

∣∣∣∣∣∣A j
∣∣∣∣∣∣

2,

and equip Cl with the norm

|(α1, . . . ,αl )|∞ = max
j=1,...,l

|α j |.

We now endow the space S l ×Cl with the norm

‖(A1, . . . , Al ,α1, . . . ,αl )‖∗ = max
j=1,...,l

{
∣∣∣∣∣∣A j

∣∣∣∣∣∣
2, |α j |}.

To simplify the notation, we assume that Li = L, |L| = l , for all i = 1, . . . ,K .
Defining the bounded linear operator Φ : S K →S K l ×CK l by

Φ(A1, . . . , AK ) = (
ηL(A1), . . . ,ηL(AK ), pL(A1), . . . , pL(AK )

)
,

we show that

√
T BT

{
Π j ,T (ωi )−Π j (ωi )

}
j∈L;i=1,...,K ,

{ ∑
s∈I j (ωi )

[µs,T (ωi )−λ j (ωi )]

}
j∈L;i=1,...,K


=Φ(

√
T BT {F (T )

ωi
−Fωi }i=1,...,K )+

√
T BT R,

where R = (
{RL,T (ωi )}i=1,...,K , {rL,T (ωi )}i=1,...,K

)
, where RL,T (ωi ),rL,T (ωi )

are given by Mas & Menneteau (2003, Proposition 2.3). The proof is
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completed by showing that
p

T BT R
p→ 0—which is equivalent to show-

ing that RL,T (ωi )
p−→ 0 and rL,T (ωi )

p−→ 0 for all i = 1, . . . ,K —and apply-
ing the continuous mapping Theorem. The determination of the co-
variance structure of the limiting random elements is given separately
in Section 3.7.6.

3.7.4 Some Comments on the Estimation of Eigenspace Projectors

Let us give a short comment on the estimation of the projectors Π j (ω).
Fix j and ω, and for simplicity let Π denote Π j (ω), whose associated
eigenvalueλ is assumed to have multiplicity one. We thus haveΠ=ϕ⊗2ϕ,
whereϕ is an eigenfunction associated to the eigenvalue λ of the operator
Fω. Recall that for any α ∈C of modulus one, αϕ is also an eigenfunction
with eigenvalue λ, so the eigenfunctions are not uniquely defined. We talk
about ϕ whereas the true object we are dealing with is a representative of
the set {αϕ : |α| = 1}. The eigenprojectors do not have this problem; they
are uniquely defined since

(αϕ)⊗2(αϕ) =ααϕ⊗2ϕ=ϕ⊗2ϕ=Π.

Let us now address a question that will occur in practice. Given two
estimators ϕ̂1 and ϕ̂2 of ϕ, how can we construct a good estimator of
Π? Two obvious approaches are possible: we could either take Π̂ =
1
2 (ϕ̂1⊗2 ϕ̂

1 + ϕ̂2⊗2 ϕ̂
2), or we could first estimate ϕ by ϕ̃= 1

2 (ϕ̂1 + ϕ̂2) and
then estimate Π by Π̂ = 1

2 (ϕ̃⊗2 ϕ̃). Our point is that the first estimator
is better, because it is invariant to the choice of representatives ϕ̂1,ϕ̂2.
However, the second estimator doesn’t satisfy this property. To see this, let
α,β be complex numbers of modulus one. If we choose ϕ̃= 1

2 (αϕ̂1+βϕ̂2),
the conjugate-bilinearity of the tensor product yields

1

2
(ϕ̃⊗2 ϕ̃) = 1

4

(
ϕ̂1⊗2 ϕ̂

1 + ϕ̂2⊗2 ϕ̂
2 +αβϕ̂1⊗2 ϕ̂

2 +αβϕ̂2⊗2 ϕ̂
1
)

,

which depends onα and β. Thus when trying to estimateΠ from a sample
of empirical eigenfunctions ϕ̂i , i = 1, . . . ,n, we shall use

Π̂= 1

n

(
n∑

i=1
ϕ̂i ⊗2 ϕ̂

i

)
.

Applying this invariance principle to the plug-in estimator of the variance
expression obtained in (3.7.9), we see that the expressions of the form
|〈ϕ,ψ

〉|2 should be estimated by∣∣〈ϕ̂1,ψ̂1
〉∣∣2 + ∣∣〈ϕ̂2,ψ̂2

〉∣∣2

2
.
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3.7.5 Karhunen–Loève-type Expansions for the Asymptotic Sample
Spectral Density Operators

In this section, we derive Karhunen–Loève-type expansions for the ran-
dom element F̆ω, to which the rescaled sample spectral density operator
converges in distribution. By a Karhunen–Loève-type expansion, we
mean a decomposition of the random element into a sum of orthogonal
deterministic functions, multiplied by uncorrelated random variables.
Expansions of the sort will be useful in Section 3.7.
Recall that Remark 3.6.6 tells us that F̆ω is either a complex Gaussian
random element, with covariance operator

G = κ2 ·C ⊗̃
2 C , ω ∈ (0,π), (3.7.10)

and relation operator

C = κ2 ·C ⊗̃
TC , ω ∈ (0,π), (3.7.11)

or a real Gaussian random element with covariance operator

C = κ2 · [C
⊗̃

2 C +C
⊗̃

TC ], ω ∈ {0,π} (3.7.12)

where κ2 = 2π
∫
RW (ω)2dω, C is a nuclear operator on the complexified

Hilbert space H in the first case, and on the real Hilbert spaceHR in the
second case.
In this Section, we let C =∑

i µiϕi ⊗2ϕi be the singular value decomposi-
tion of C .

Lemma 3.7.4.
Let H be a complexified Hilbert space, and C be a nuclear and self-adjoint
operator on H, with spectral decomposition C = ∑

i µiϕi i , where ϕi j =
ϕi ⊗2ϕ j . If Y is a complex Gaussian random element on S2(H ) with mean
0, covariance operator

G = E [Y ⊗2 Y ] =C
⊗̃

2 C

and relation operator

C = E
[

Y ⊗2 Y
]
=C

⊗̃
TC ,

Then the following expansion is a Karhunen–Loève-type expansion for Y :

Y =∑
i
ξiϕi i +

∑
i< j

[
ξi j ei j +ζi j iẽi j

]
, (3.7.13)

where the convergence holds in L2(Ω,S2(H),P),

ei j = 2−1/2(ϕi j +ϕ j i ),
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ẽi j = 2−1/2(ϕi j −ϕ j i ),

and
{ξi }i ∪ {ξi j }i< j ∪ {ζi j }i< j

are independent real Gaussian random variables, defined by

ξi =
〈

Y ,ϕi i
〉
S2

, ξi j =
〈

Y ,ei j
〉
S2

, ζi j =−i
〈

Y , ẽi j
〉
S2

. (3.7.14)

They have mean zero and variance

var(ξi ) =µ2
i , var

(
ξi j

)= var
(
ζi j

)=µiµ j , i 6= j .

Notice that we have not assumed that Y takes self-adjoint values in the
statement, but that the Lemma tells us that Y takes necessarily self-adjoint
values:

Corollary 3.7.5. If Y satisfies the conditions of Lemma 3.7.4, then Y = Y †

almost surely.

Proof. Taking the adjoint of (3.7.13) yields the result.

We also point out that the random element Y can also be written in the
following form, which will be useful later on.

Remark 3.7.6. Under the conditions of Lemma 3.7.4, we can write

Y =
∞∑

i , j=1
ηi jϕi j ,

where the (ηi j )i , j≥1 are all random variables with mean zero. The random
variables ηi i are real Gaussian random variables, with variance µ2

i , and
the variables {ηi j , i 6= j } are complex circular Gaussian random variables,

i.e., ℜ(ηi j ) and ℑ(ηi j ) are independent real Circular Gaussian

random variable are

defined in

Definition 3.12.1 on

page 134; ℜ(·) and ℑ(·)
denote the real and

imaginary parts of a

complex number

Gaussian random variables,
with variance

var
(ℜ(ηi j )

)= var
(ℑ(ηi j )

)=µiµ j /2, i 6= j .

Furthermore, they satisfy

ηi j = η j i , i 6= j ,

and the following random variables are all independent:{
ηi j : 1 ≤ i ≤ j

}
.

Proof of Lemma 3.7.4. We assume, without loss of generality, that
{
ϕ j : j ≥ 1

}
is an orthonormal basis of H . We want to look for a Karhunen–Loève-type
expansion for Y . The idea behind a Karhunen–Loève-type expansion is to
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find a sequence of unit length elements (vectors) (φn)n≥1 ⊂S2(H) such
that the scores (ξn)n≥1,ξn = 〈

Y ,φn
〉
S2

, are all strongly uncorrelated,the definition of strong

uncorrelatedness is

given in

Definition 3.12.3 on

page 135

with
var(ξn) ≥ var(ξm) if n > m. In our case, strong uncorrelatedness translates
into the following conditions, for n 6= m:

E
[〈

Y ,φn
〉
S2

〈
Y ,φm

〉
S2

]
= 〈

Gφm ,φn
〉= 0, (3.7.15)

E
[〈

Y ,φn
〉
S2

〈
Y ,φm

〉
S2

]
=

〈
Cφm ,φn

〉
= 0, (3.7.16)

for all n 6= m ≥ 1, and the variance condition translated to

E |〈Y ,φn
〉|2 ≥ E |〈Y ,φm

〉|2, n > m, (3.7.17)

or equivalently, 〈
Gφn ,φn

〉≥ 〈
Gφm ,φm

〉
, n > m. (3.7.18)

To simplify notation, we shall write Φ=φn , Ψ=φm . Assuming without
loss of generality that (ϕi j )i , j≥1 is an orthonormal basis of S2(H ), we write
Φ,Ψ in this basis:

Φ= ∑
i , j≥1

ci jϕi j ,

Ψ= ∑
i , j≥1

dklϕkl ,

Here and in the following, sums will all be over {1,2, . . .}, e.g.
∑

i , j will mean∑
i , j≥1. The following fact, justified by Proposition A.2.10, will be useful:

ϕi jϕkl = (ϕi ⊗2ϕ j )(ϕk ⊗2ϕl ) = δ j kϕi l .

Since 〈
(C

⊗̃
2 C )Φ,Ψ

〉
= 〈CΦC ,Ψ〉

=
〈(∑

r
µ jϕr r

)(∑
i , j

ci jϕi j

)(∑
s
µsϕss

)
,Ψ

〉

=
〈 ∑

r,i , j ,s
µrµsci jδr iδ j sϕr s ,Ψ

〉

=
〈∑

i , j
µiµ j ci jϕi j ,

∑
k,l

dklϕkl

〉
= ∑

i , j ,k,l
µiµ j ci j dklδi kδ j l

=∑
i , j
µiµ j ci j di j ,
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equation (3.7.15) becomes ∑
i , j
µiµ j ci j di j = 0. (3.7.19)

Similarly, since〈
(C

⊗̃
TC )Φ,Ψ

〉
=

〈
CΦ

T
C
T

,Ψ
〉

=
〈

CΦ†C ,Ψ
〉

=
〈(∑

r
µ jϕr r

)(∑
i , j

c j iϕi j

)(∑
s
µsϕss

)
,Ψ

〉
=∑

i , j
µiµ j c j i di j ,

using the fact that the eigenvalues µi are all real, equation (3.7.16) be-
comes ∑

i , j
µiµ j c j i di j = 0. (3.7.20)

The variance condition (3.7.18) translates into∑
i , j
µiµ j |ci j |2 ≥

∑
i , j
µiµ j |di j |2, (3.7.21)

and the unit length condition is∑
i , j

|ci j |2 = 1 =∑
i , j

|di j |2. (3.7.22)

We now have all the equations necessary to find the vectors φn . We start
with Φ=φ1: it must maximize the variance of

〈
Y ,φ1

〉
, i.e., maximize the

left-hand side of (3.7.21) subject to condition (3.7.22). Since the eigenval-
ues of C are decreasing, µ1 ≥µ2 ≥ ·· · , the solution is ci j = δi j , or in other
words φ1 =ϕ11 (if µ1 =µ2, the solution is not unique, but the final form
of the expansion will be similar). Now to Ψ = φ2: by (3.7.19), we must
have d11 = 0. To maximize the variance, we then see that we should take
δi j = 0 unless (i , j ) is either equal to (1,2) or equal to (2,1). We see that the
equations are not enough to determineΨ=φ2; we therefore also consider
Φ=φ3 simultaneously. Similar considerations lead to ci j = 0 unless (i , j )
is either (1,2) or (2,1). Writing α= c12, β= c21, γ= d12, δ= d21, equations
(3.7.19), (3.7.20), and (3.7.22) yield the system of equations

αδ+γβ = 0,

αγ+βδ = 0,

|α|2 +|β|2 = 1,

|γ|2 +|δ|2 = 1.
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Solving this system yields α= β, γ= δ, γ=±iα, with |α| = 1/
p

2. Notice
that the matrices (ci j ) and (di j ) of any of these solutions are self-adjoint.

We choose without loss of generalityα=β= 1/
p

2, γ= δ= i/
p

2. Using the
notation of the statement of the Lemma, we have φ2 = e12 and φ3 = iẽ12.
Now we write ξ12 = 〈Y ,e12〉S2

and ζ12 = 〈Y , iẽ12〉S2
. We can now continue

with the same arguments to get the following φn ’s. If µ1µ3 ≥µ2µ2,

φ3 = e13, φ4 = ẽ13, φ5 =ϕ22.

Otherwise,
φ3 =ϕ22,φ4 = e13,φ5 = ẽ13,

and so on. We define ξi =
〈

Y ,ϕi i
〉
S2

for all i ≥ 1, and also ξi j =
〈

Y ,ei j
〉
S2

and ζi j =
〈

Y , iẽi j
〉
S2

for all j > i ≥ 1. By construction, these are all strongly
orthogonal, and since Y is complex Gaussian, they are also independent.
Furthermore, the covariance of ξi j is

E
[
ξi jξi j

]
= 〈

G ei j ,ei j
〉
S2

= 〈
Cei j C ,ei j

〉
S2

=µiµ j

and the relation of ξi j is

E
[
ξi jξi j

]= 〈
C ei j ,ei j

〉
S2

=
〈

Ce†
i j C ,ei j

〉
S2

= 〈
Cei j C ,ei j

〉
S2

=µiµ j .

Therefore, by Lemma 3.12.2, ξi j is real Gaussian with mean zero and
variance µiµ j . The exact same reasoning applies to ξi . For ζi j , things are
similar: the covariance is

E
[
ζi jζi j

]
= 〈

G ẽi j , ẽi j
〉
S2

= 〈
C ẽi j C , ẽi j

〉
S2

=µiµ j

and the relation of ζi j is

E
[
ζi jζi j

]= 〈
C iẽi j , iẽi j

〉
S2

=−i
〈

C (iẽi j )†C , ẽi j

〉
S2

=−〈
C (−ẽi j )C , ẽi j

〉
S2

=µiµ j .

Therefore, ζi j is also real Gaussian. To complete the proof, notice that
ei j + ẽi j =

p
2ϕi j and ei j − ẽi j =

p
2ϕ j i , and therefore{

ϕi i : i ≥ 1
}∪{{

ei j , ẽi j
}

: 1 ≤ i < j
}

forms a complete orthonormal basis of H , and

Y =∑
i
ξiϕi i +

∑
i< j

[
ξi j ei j +ζi j iẽi j

]
.

We now turn to the real case.

Lemma 3.7.7.

Let HR be a real Hilbert space, and C be a nuclear and self-adjoint operator
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on HR, with spectral decomposition

C =∑
i
µiϕi i ,

where ϕi j =ϕi ⊗2ϕ j .
If Y is a Gaussian random element on S2(HR), with mean 0 and covariance
operator

C =C
⊗̃

2 C +C
⊗̃

TC , (3.7.23)

then
Y =∑

i
ξiϕi i +

∑
i< j

ξi j ei j , (3.7.24)

where the convergence holds in L2 (Ω,S2(HR),P), ei j = 2−1/2(ϕi j +ϕ j i ),
and

(ξi )i ∪ (ξi j )i< j

are independent real Gaussian random variables, defined by

ξi =
〈

Y ,ϕi i
〉
S2

, ξi j =
〈

Y ,ei j
〉
S2

. (3.7.25)

They have mean zero and variance

var(ξi ) = 2µ2
i , var

(
ξi j

)= 2µiµ j .

Proof. Assume without loss of generality that
{
ϕ j : j ≥ 1

}
is an orthonor-

mal basis of HR. Using results from Section A.3.4, we get

C =∑
i

2µ2
i ϕi i

⊗
2ϕi i +

∑
i< j

2µiµ j ei j
⊗

2 ei j .

Since ϕi i and ei j are orthonormal for all i < j , the random elements
defined in (3.7.25) have the stated properties. Furthermore, since ẽi j is
orthogonal to ϕi i and ei j , for all i < j , C ẽi j = 0. Furthermore,{

ϕi i : i ≥ 1
}∪{{

ei j , ẽi j
}

: 1 ≤ i < j
}

is an orthonormal basis of HR, and therefore,

Y = ∑
i< j

[〈
Y ,ϕi i

〉
ϕi i +

〈
Y ,ei j

〉
ei j +

〈
Y , ẽi j

〉
ẽi j

]=∑
i
ξiϕi i +

∑
i< j

ξi jϕi j ,

and the proof is complete.

Similarly to the complex case, although we have not assumed in the
statement of the Lemma that Y takes self-adjoint values, it turns out that
it must take self-adjoint values:

Corollary 3.7.8. If Y satisfies the conditions of Lemma 3.7.7, then Y = Y †

almost surely.
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Proof. Taking the adjoint of (3.7.24) yields the result.

We can also re-write the Karhunen–Loève expansion of Y in the following
form, which will be useful later on:

Remark 3.7.9. Under the conditions of Lemma 3.7.7, we can write

Y =
∞∑

i , j=1
ηi jϕi j ,

where the (ηi j )i , j≥1 are all real Gaussian random variables, with mean
zero, and variance

var
(
ηi i

)= 2µ2
i , var

(
ηi j

)=µiµ j , i 6= j ,

and ηi j = η j i for all i 6= j . Furthermore,{
ηi j : 1 ≤ i ≤ j

}
are all independent.

3.7.6 Computation of Asymptotic Covariances

In this Section, we determine the asymptotic covariance of estimators of
the eigenprojections and eigenvalues of Fω, as stipulated in Theorem
3.7.3. We will use the same notation as in Section 3.7. Simple calculations
yield

ηωk (ϕωi ⊗2ϕ
ω
j ) = Eω

k (i , j )ϕωi ⊗2ϕ
ω
j ,

where Eω
k is defined by

Eω
k (i , j ) = 1{k∈J (ω)} ·

∑
s∈J (ω)\{k}

[
1{(i∈Ik (ω))∩( j∈Is (ω))} +1{(i∈Is (ω))∩( j∈Ik (ω))}

]
(λk (ω)−λs(ω))−1. (3.7.26)

From now on, we suppress dependence on the frequency ω, for tidiness.
Equation 3.7.26 says that Ek (i , j ) = (λk −λs)−1 if for some s 6= k; s,k ∈ J ,
either

i ∈ Ik & j ∈ Is

or
j ∈ Ik & i ∈ Is ,

and Ek (i , j ) = 0 otherwise. Notice that Ek (i , i ) = 0, and Ek (i , j ) = Ek ( j , i ).
Thus ηk (ei j ) = Ek (i , j )ei j and ηk (ẽi j ) = Ek (i , j )ẽi j .Recall the definition of

ei j and ẽi j on

page 106

The following Lemma
gives some other useful properties of Ek (i , j ).

Lemma 3.7.10.
Let {

c(i , j ) : i , j ∈ J (ω)
}⊂ H
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be a bounded sequence of elements of a separable Hilbert space H satisfying

c(i , j ) = c( j , i ), i , j ∈ J (ω).

Then, ∑
1≤i< j<∞

Ek (i , j )2c(i , j )µiµ j =
∑

s∈J (ω)\{k}
(λk −λs)−2λkλs

∑
i∈Ik

∑
j∈Is

c(i , j )λiλ j

1{k,l∈J (ω)}

∑
1≤i< j<∞

Ek (i , j )El (i , j )c(i , j )µiµ j =−(λk −λl )−2λkλl

∑
i∈Ik

∑
j∈Il

c(i , j )

Proof. Notice that

Ek (i , j )2 = 1{k∈J (ω)} ·
∑

s∈J (ω)\{k}

∑
t∈J (ω)\{k}

(λk −λs)−1(λk −λt )−1×

×
[

1{(i∈Ik )∩( j∈Is )} +1{(i∈Is )∩( j∈Ik )}

][
1{(i∈Ik )∩( j∈It )} +1{(i∈It )∩( j∈Ik )}

]
= 1{k∈J (ω)} ·

∑
s∈J (ω)\{k}

(λk −λs)−2
[

1{(i∈Ik )∩( j∈Is )} +1{(i∈Is )∩( j∈Ik )}

]
.

Therefore,

∑
1≤i< j

Ek (i , j )2c(i , j )µiµ j = 1{k∈J (ω)} ·
∑

s∈J (ω)\{k}
(λk −λs)−2

∞∑
i=1

∞∑
j=i+1

[
1{(i∈Ik )∩( j∈Is )} +1{(i∈Is )∩( j∈Ik )}

]
c(i , j )µiµ j

= 1{k∈J (ω)} ·
∑

s>k;s∈J (ω)
(λk −λs)−2

∑
i∈Ik

∑
j∈Is

c(i , j )µiµ j

+1{k∈J (ω)} ·
∑

s<k;s∈J (ω)
(λk −λs)−2

∑
i∈Is

∑
j∈Ik

c(i , j )µiµ j

= 1{k∈J (ω)} ·
∑

s>k;s∈J (ω)
(λk −λs)−2

∑
i∈Ik

∑
j∈Is

c(i , j )λkλs

+1{k∈J (ω)} ·
∑

s<k;s∈J (ω)
(λk −λs)−2

∑
i∈Ik

∑
j∈Is

c( j , i )λsλk

= 1{k∈J (ω)} ·
∑

s∈J (ω)\{k}
(λk −λs)−2λkλs

∑
i∈Ik

∑
j∈Is

c(i , j ).

This proves the first equality. For the second one, if i < j ,

Ek (i , j )El (i , j ) = 1{k,l∈J (ω)} ·
∑

s∈J (ω)\{k}

∑
t∈J (ω)\{l }

(λk −λs)−1(λl −λt )−1×

×
[

1{(i∈Ik )∩( j∈Is )} +1{(i∈Is )∩( j∈Ik )}

][
1{(i∈Il )∩( j∈It )} +1{(i∈It )∩( j∈Il )}

]
= 1{k,l∈J (ω)} ·

∑
s∈J (ω)\{k}

∑
t∈J (ω)\{l }

(λk −λl )−1(λl −λk )−1×

×
[
δk,tδs,l 1{(i∈Ik )∩( j∈Il )} +δk,tδs,l 1{(i∈Il )∩( j∈Ik )}

]
=−1{k,l∈J (ω)} · (λk −λl )−2 ·

[
1{(i∈Ik )∩( j∈Il )} +1{(i∈Il )∩( j∈Ik )}

]



114 3. INFERENCE FOR THE SPECTRAL DENSITY OPERATORS

Therefore, if k < l ,∑
i< j

Ek (i , j )El (i , j )c(i , j )µiµ j

=−1{k,l∈J (ω)} · (λk −λl )−2 · ∑
i< j

[
1{(i∈Ik )∩( j∈Il )} +1{(i∈Il )∩( j∈Ik )}

]
c(i , j )µiµ j

=−1{k,l∈J (ω)} · (λk −λl )−2λkλl ·
∑

i∈Ik

∑
j∈Il

c(i , j )

because i ∈ Il =⇒ j 6∈ Ik , since Ik < Il . Interchanging k and l yields the
result same result for k > l .

Finally, notice that there is no problem with the convergence of the series
since all their absolute sums are all bounded by

λk mk sup
∥∥c(i , j )

∥∥ ·max(λk −λk+1,λk−1 −λk )−2 · |||Fω|||1 <∞.

If Y is a random element of S2(H) of the form (3.7.13), we have (omitting
the ωs)

ηk (Y ) = ∑
i< j

Ek (i , j )
[
ξi j ei j + iζi j ẽi j

]
, (3.7.27)

and thus

ηk (Y )
⊗

2ηl (Y ) = ∑
i< j

∑
s<t

Ek (i , j )El (s, t )×

× [
ξi jξst ei j

⊗
2 est − iξi jζst ei j

⊗
2 ẽst + iζi jξst ẽi j

⊗
2 est +ζi jζst ẽi j

⊗
2 ẽst

]
.

The equality comes from the fact that the cross-terms cancel out, and the
properties of the tensor products .⊗2 . and .

⊗̃
2 ., see Section A.3.4. The

covariance operator between ηk (Y ) and ηl (Y ) is therefore given by

E
[
ηk (Y )

⊗
2ηl (Y )

]= ∑
i< j

Ek (i , j )El (i , j )
[
var

(
ξi j

)
ei j

⊗
2 ei j +var

(
ζi j

)
ẽi j

⊗
2 ẽi j

]
= ∑

i< j
Ek (i , j )El (i , j )µiµ j

[
ϕi i

⊗̃
2 ϕ j j +ϕ j j

⊗̃
2 ϕi i

]
.

We now distinguish the cases k = l and k 6= l . If k = l , Lemma 3.7.10 yields
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E
[
ηk (Y )

⊗
2ηk (Y )

]= ∑
i< j

Ek (i , j )2µiµ j

[
ϕi i

⊗̃
2 ϕ j j +ϕ j j

⊗̃
2 ϕi i

]
.

= ∑
s∈J\{k}

∑
i∈Ik

∑
j∈Is

λkλs(λk −λs)−2
[
ϕi i

⊗̃
2 ϕ j j +ϕ j j

⊗̃
2 ϕi i

]
= ∑

s∈J\{k}
λkλs(λk −λs)−2

[( ∑
i∈Ik

ϕi i

) ⊗̃
2

( ∑
j∈Is

ϕ j j

)
+

( ∑
j∈Is

ϕ j j

) ⊗̃
2

( ∑
i∈Ik

ϕi i

)]
= ∑

s∈J\{k}
λkλs(λk −λs)−2

[
Πk

⊗̃
2 Πs +Πs

⊗̃
2 Πk

]

If k 6= l , Lemma 3.7.10 yields

E
[
ηk (Y )

⊗
2ηl (Y )

]=− ∑
i∈Ik

∑
j∈Il

λkλl (λk −λl )−2
[
ϕi i

⊗̃
2 ϕ j j +ϕ j j

⊗̃
2 ϕi i

]
=−λkλl (λk −λl )2

[
Πk

⊗̃
2 Πl +Πl

⊗̃
2 Πk

]
Therefore, for k, l ∈ J (ω),

E
[
ηk (Y )

⊗
2ηl (Y )

]=
−λkλl (λk −λl )2 [

Πk
⊗̃

2 Πl +Πl
⊗̃

2 Πk
]

if k 6= l∑
s∈J (ω)\{k}λkλs(λk −λs)2

[
Πk

⊗̃
2 Πs +Πs

⊗̃
2 Πk

]
if k = l .

We now turn to the computation of the relation operator of a random
element Y ∈S2(H) of the form (3.7.13). We have

ηk (Y )
⊗

2ηl (Y ) = ∑
i< j

∑
s<t

Ek (i , j )El (s, t )×

× [
ξi jξst ei j

⊗
2 est + iξi jζst ei j

⊗
2 ẽst + iζi jξst ẽi j

⊗
2 est −ζi jζst ẽi j

⊗
2 ẽst

]
.

The relation operator between ηk (Y ) and ηl (Y ) is therefore given by

E
[
ηk (Y )

⊗
2ηl (Y )

]
= ∑

i< j
Ek (i , j )El (i , j )

[
var

(
ξi j

)
ei j

⊗
2 ei j −var

(
ζi j

)
ẽi j

⊗
2 ẽi j

]
= ∑

i< j
Ek (i , j )El (i , j )µiµ j

[
ei j

⊗
2 ei j − ẽi j

⊗
2 ẽi j

]
= ∑

i< j
Ek (i , j )El (i , j )µiµ j

[
ϕi i

⊗̃
Tϕ j j +ϕ j j

⊗̃
Tϕi i

]
,

where we have used Proposition A.3.5.
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Using Lemma 3.7.10, we get

E
[
ηk (Y )⊗2ηl (Y )

]
=

−λkλl (λk −λl )−2
[
Πk

⊗̃
TΠl +Πl

⊗̃
TΠk

]
, k 6= l ,∑

s∈J (ω)\{k}λkλs(λk −λs)−2
[
Πk

⊗̃
TΠs +Πs

⊗̃
TΠk

]
, k = l .

Notice in particular that by Proposition A.3.5,(
Πk

⊗̃
TΠs

)T =
(
Πs

⊗̃
TΠk

)
,

which is not surprising since(
ηk (Y )⊗2ηl (Y )

)T = ηl (Y )⊗2ηk (Y ).

If Y is of the form (3.7.24) (and in particular real valued), we obtain

ηk (Y ) = ∑
i< j

Ek (i , j )ξi j ei j , (3.7.28)

and therefore

E
[
ηk (Y )⊗2ηl (Y )

]= ∑
i< j

Ek (i , j )El (i , j )
[
var

(
ξi j

)
ei j ⊗2 ei j

]
=

−λkλl (λk −λl )−2
[
Πk

⊗̃
2 Πl +Πl

⊗̃
2 Πk +Πk

⊗̃
TΠl +Πl

⊗̃
TΠk

]
, k 6= l∑

s 6=k λkλs(λk −λs)−2
[
Πk

⊗̃
2 Πs +Πs

⊗̃
2 Πk +Πk

⊗̃
TΠl +Πl

⊗̃
TΠk

]
, k = l ,

where we have used Proposition A.3.5 and the fact the ϕi =ϕi because Y
is real-valued. Notice in particular that(

Πk

⊗̃
TΠl

)† =Πl

⊗̃
TΠk .

We now turn our attention to the joint distribution of pl (Y ) and ηk (Y ).
Since the Karhunen–Loève expansion of pl (Y ) is given by

pl (Y ) = ∑
i∈Il

ξi . (3.7.29)

in both cases (3.7.13) and (3.7.24), we see directly from (3.7.27) and (3.7.28)
that pl (Y ) is independent of ηk (Y ) for any l ,k ∈ J .

For the covariance of the estimated eigenvalues, using the Karhunen–
Loève expansion of pl (Y ), we get

cov
(
pl (Y ), pk (Y )

)= δl kλ
2
l Tr(Πl ),
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if Y is of the form (3.7.13), and

cov
(
pl (Y ), pk (Y )

)= δlk 2λ2
l Tr(Πl ),

if Y is of the form (3.7.24). This finishes the computation of the covari-
ances for the asymptotic distributions of the sample eigenvalues and
sample eigenprojections.

3.8 The Effect of Discrete Observation

In practice, functional data are often observed on a discrete grid, subject
to measurement error, and smoothing is employed to make the transition
into the realm of smooth functions. This section considers the stability
of the consistency of our estimator of the spectral density operator with
respect to discrete observation of the underlying stationary functional
process. Since our earlier results do not a priori require any smoothness
of the functional data, except perhaps smoothness that is imposed by our
mixing conditions, we consider a ‘minimal’ scenario where the curves
are only assumed to be continuous in mean square. Under this weak
assumption, we formalise the asymptotic discrete observation framework
via observation on an increasingly dense grid subject to noise of decreas-
ing variance (the so called “low noise" or “decreasing noise" setup, see e.g.
Hall & Vial (2006)).

Let Γ be the grid 0 = τ1 < τ2 < ·· · < τM < τM+1 = 1 on [0,1], with M = M(T )
being a function of T such that M(T ) →∞ as T →∞, and

|Γ| = sup
j=1,...,M

τ j+1 −τ j → 0, M →∞.

We assume we are in a fixed design setup: we observe each curve X t on
the grid Γ (except possibly at τM+1), additively corrupted by measurement
error, represented by random variables {εt j }:

yt j = X t (τ j )+εt j , t = 0, . . . ,T −1; j = 1, . . . M .

We shall make the following assumptions concerning the additive noise:

Condition 3.8.1. The noise εt j satisfies the following conditions:

1. Independence with respect to X : the random variables (εt j )t , j are all
independent of the X t s.

2. Uniformly bounded fourth moment: E
[
ε4

t j

]
< c1 for all t , j , for some

constant c1 =O(1).
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3. Fourth order stochastic orthogonality across time :

E [εt ·εs·] = E [εt ·] E [εs·], t 6= s,

E [εt ·εt ·εs·] = E [εt ·εt ·] E [εs·], t 6= s,

E
[
εt1·εt2·εt3·

]= E
[
εt1·

]
E
[
εt2·

]
E
[
εt3·

]
, t1, t2, t3 distinct,

E
[
εt1·εt2·εt3·εt4·

]= E
[
εt1·

]
E
[
εt2·

]
E
[
εt3·

]
E
[
εt4·

]
, t1, t2, t3, t4 distinct,

E [εt ·εt ·εs·εs·] = E [εt ·εt ·] E [εs·εs·], t 6= s,

E [εt ·εt ·εt ·εs·] = E [εt ·εt ·εt ·] E [εs·], t 6= s,

where we have simplified the notation by writing εt · instead of εt j .
This means that the dots in each εt · can be replaced by any j , pro-
vided we do the replacement on both sides of the equations, at the
corresponding locations. For instance, the first equation really means

E
[
εt jεsk

]= E
[
εt j

]
E [εsk ], ∀s 6= t ,∀ j ,k.

Remark 3.8.2. The reason we make no stronger assumptions on the noise
will be explained in Remark 3.8.4. Meanwhile, notice that

1. We do not make any assumption about the mean of the observation
noise, nor did we assume it to be uncorrelated within a fixed time
point: (εt j )m

j=1 may be correlated.

2. Assumption 3 of Conditions 3.8.1 could be replaced by the stronger
assumptions of independence across time of the noise variables.

Our goal is to show that our estimator of F (T )
ω , when constructed on the

basis of the yt j ’s, retains its strong consistency for the true spectral density
operator. To construct our estimator on the basis of discrete observations,
we use the following (naive) proxy of the true X t :

ε,s X t (τ) = yt j , if τ j ≤ τ< τ j+1,

and define the step-wise version of X t :

s X t (τ) = X t (τ j ), if τ j ≤ τ< τ j+1.

Just as the spectral density kernel estimator f (T )
ω is a functional of the X t ’s,

we can define ε,sf (T )
ω and sf (T )

ω , as the corresponding functionals of the

ε,s X t ’s, s X t , respectively. The same can also be done for fω, F (T )
ω , p(T )

ω ,
X̃ (T )
ω . We then have the following stability result.

Theorem 3.8.3.
Assume that each rt is continuous,∑

t
‖rt‖∞ <∞, (3.8.1)
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and that C(1,2), C(1,4) and Conditions 3.8.1 hold. Let γ= γ(M ,T ) be the
upper bound on the standard deviation of the noise,

γ= γ(M ,T ) = sup
j=1,...,M ;t=0,...,T−1

√
var

(
εt j

)
,

and b = b(M ,T ) be the upper bound on its bias,

b = b(M ,T ) = sup
j=1,...,M ;t=0,...,T−1

| Eεt j |.

Then, assuming T →∞, BT → 0, we have

sup
ω∈[−π,π]

E
∣∣∣∣∣∣
ε,sF

(T )
ω −Fω

∣∣∣∣∣∣2

2
= 8 sup

ω∈[−π,π]
|||sFω−Fω|||22

+O(B 2
T )+O(T −2)+O(T −1B−2

T )

+O(B−1
T )

[
O(T 2b4)+O(T )O(b2)O(γ2 +b2)

]
+O(B−1

T )
[
O(c1b)+O(γ2)

]
+O(B−1

T )
[
O(b4)+O(γ4)

]
+O(T BT )−1O(c1).

Replacing the supremum norm by the mean, we get a slightly different
bound (the changes are on the first two lines):∫ π

−π
E
∣∣∣∣∣∣
ε,sF

(T )
ω −Fω

∣∣∣∣∣∣2

2
dω= 8

∫ π

−π
|||sFω−Fω|||22dω

+O(B 2
T )+O(T −2)+O(T −1B−1

T )

+O(B−1
T )

[
O(T 2b4)+O(T )O(b2)O(γ2 +b2)

]
+O(B−1

T )
[
O(c1b)+O(γ2)

]
+O(B−1

T )
[
O(b4)+O(γ4)

]
+O(T BT )−1O(c1),

Remark 3.8.4. The reason that the statement of the Theorem is so com-
plicated is its generality. Indeed, it relates the consistency of the estimator
constructed from noisy observation to the rate at which the mean, variance,
and fourth moment of the observation errors have to decrease, compared
to the length T of the FTS, and the bandwidth parameter BT .

1. Notice that the term supω∈[−π,π] |||sFω−Fω|||22 is o(1) under the as-
sumptions of the Theorem.

2. If E
[
εt j

] = 0 for all t , j , and T B 2
T →∞, c1 = O(1), the error terms

simplify to
O(B−1

T )O(γ2 +γ4).

This is essentially telling us that a small “noise variance to bandwidth”
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ratio is sufficient to have consistent estimators, provided the errors
have mean zero.

3. One might want to opt for more sophisticated smoothing techniques
to estimate the curves X t from noisy observations. In this case, The-
orem 3.8.3 can be applied. Indeed, if X̂ t is the estimated curve
for X t , we can take yt j = X̂ t (τ j ). Then the error terms become
εt j = X̂ t (τ j )− X t (τ j ). The quantity b is therefore a uniform bound
on the bias (conditionally on X ) of the estimators X̂ t , and γ2 is a
uniform bound on their conditional variance. Notice that the error
terms for the same t will be correlated, but this is not an issue since
the Theorem holds for arbitrary correlation of the errors within a time
point. For a given smoothing method, the Theorem therefore tells
us at what (uniform) rate the bias and the variance of the estimated
curves have to decrease, relatively to BT and T , in order to ensure the
consistency of the sample spectral density operators based on noisy
observations. (for instance, if c1 =O(1) but not o(1), then the bias of
the estimated curves should be uniformly o(BT )). These conditions
can then be used and give insight into how much to smooth the noisy
observations; this will be investigated in future work.

Proof of Theorem 3.8.3. By the triangle inequality,

E
∣∣∣∣∣∣
ε,sF

(T )
ω −F (T )

ω

∣∣∣∣∣∣2

2
≤ 2 E

∣∣∣∣∣∣
ε,sF

(T )
ω −F (T )

ω

∣∣∣∣∣∣2

2
+2 E

∣∣∣∣∣∣F (T )
ω −Fω

∣∣∣∣∣∣2
2,

hence, by Theorem 3.6.1 and 3.6.2, we can restrict ourselves to the first
summand. Using the triangle inequality again,

sup
ω
E
∣∣∣∣∣∣
ε,sF

(T )
ω −F (T )

ω

∣∣∣∣∣∣2

2
≤ sup

ω

Ï
E
∣∣∣ε,sf (T )

ω − sf (T )
ω

∣∣∣2 + sup
ω

Ï
E
∣∣

sf (T )
ω − f (T )

ω

∣∣2
.

(3.8.2)

The integrals are on [0,1]2 with respect to dτdσ. First, we deal with the
first summand:

∣∣∣ε,sf (T )
ω − sf (T )

ω

∣∣∣2 = 2πT −2

∣∣∣∣∣T−1∑
l=0

W (T )(ω−2πl/T )
(
ε,s

p(T )
2πl/T −

s
p(T )

2πl/T

)∣∣∣∣∣
2

≤O(T −1)
T−1∑
l=0

[W (T )(ω−2πl/T )]2
∣∣∣
ε,s

p(T )
2πl/T −

s
p(T )

2πl/T

∣∣∣2
,

where we have used Jensen’s inequality. We claim that, if τ j ≤ τ< τ j+1 and
τk ≤σ< τk+1,∣∣
ε,s p(T )

ω (τ,σ)− s p(T )
ω (τ,σ)

∣∣2 ≤ 3|s X̃ (T )
ω (τ)|2|ε̃ (T )

−ω(k)|2

+3|ε̃ (T )
ω ( j )ε̃ (T )

−ω(k)|2 +3|ε̃ (T )
ω ( j )|2|s X̃ (T )

−ω(σ)|2,
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where ε̃ (T )
ω ( j ) = (2πT )−1/2 ∑T−1

l=0 e−iωtεt j . To see this, we note that

ε,s p(T )
ω (τ,σ)− s p(T )

ω (τ,σ) = ε,s X̃ (T )
ω (τ) · ε,s X̃ (T )

−ω(σ)− s X̃ (T )
ω (τ) · s X̃ (T )

−ω(σ)

= (
ε,s X̃ (T )

ω (τ)− s X̃ (T )
ω (τ)

) · ε,s X̃ (T )
−ω(σ)+

+ s X̃ (T )
ω (τ) · (ε,s X̃ (T )

−ω(σ)− s X̃ (T )
−ω(σ)

)
= s X̃ (T )

ω (τ)ε̃ (T )
−ω(k)+ ε̃ (T )

ω ( j )ε̃ (T )
−ω(k)+

+ ε̃ (T )
ω ( j )s X̃ (T )

−ω(σ),

since ε,s X̃ (T )
ω (τ) = s X̃ (T )

ω (τ)+ ε̃ (T )
ω ( j ), and similarly if we replace σ by τ and

j by k. Our claim thus follows from Jensen’s inequality.

In order to bound the expectation of
∣∣∣ε,s p(T )

ω (τ,σ)− s p(T )
ω (τ,σ)

∣∣∣2
, we will

first compute the expectation, conditional on the σ-algebra generated by
the X t ’s, which we will denote by EX , and then use the tower property. As
an intermediate step, we claim that

EX |ε̃ (T )
ω ( j )|2 =O(T b2)+O(γ2) =: C1

and

EX |ε̃ (T )
ω ( j )ε̃ (T )

−ω(k)|2 =O(c1T −1)+O(c1b)+O(γ4)+O(b4)+O(γ2+b2)O(T b2)+O(T 2b4) =: C2

uniformly in j ,k = 1, . . . , M , and uniformly in ω (notice that all EX can be
replaced by E since the εt j ’s are independent of the X t ’s). For simplicity,
we shall refer to these bounds by C1 and C2. To establish our claim, notice
that

EX |ε̃ (T )
ω ( j )|2 = varX

(
ε̃ (T )
ω ( j )

)+ E2
X

(
ε̃ (T )
ω ( j )

)
,

where the second term is O(T b2). Since |ε̃ (T )
ω ( j )|2 = ε̃ (T )

ω ( j )ε̃ (T )
−ω( j ), we get

varX
(
ε̃ (T )
ω ( j )

)= (2πT )−1
T−1∑
t ,s=0

e−iω(t−s)covX
(
εt j ,εs j

)
.

The summand is equal to γ2 if t = s, and zero otherwise (by our assump-
tions on the ε’s), hence the first statement follows directly. We can now
turn to the second statement. First, notice that

EX |ε̃ (T )
ω ( j )ε̃ (T )

−ω(k)|2 ≤ T −2
T−1∑

t1,t2,t3,t4=0

∣∣covX
(
εt1εt2 ,εt3εt4

)∣∣ ,

where we have written εt instead of εt j for tidiness. We now bound the
summand in each of the following cases, and count the number of such
cases:

1. the summand is of the form EX ε
4
t , which is bounded by c1. There

are T such cases;
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2. the summand is of the form EX (ε3
t εs) = EX (ε3

t ) EX εs , which is bounded
by c1b. There are O(T 2) such cases;

3. the summand is of the form EX
(
ε2

t ε
2
s

)
with s 6= t . It is bounded by

O(γ4)+O(b4), and there are O(T 2) such summands;

4. the summand is of the form EX
(
ε2

t εs1εs2

)
, with both s1, s2 6= t . It is

bounded by (γ2 +b2)b2, and there are O(T 3) such summands;

5. the summands are of the form Ex
(
εt1εt2 ,εt3εt4

)
, where all the t j s are

distinct. It is bounded by b4, and there are O(T 4) such summands.

Piecing these bounds together, we get

EX |ε̃ (T )
ω ( j )ε̃ (T )

−ω(k)|2 =O(c1T −1)+O(c1b)+O(γ4)+O(b4)+O(γ2 +b2)O(T b2)+O(T 2b4)

uniformly in ω, j ,k.

We can now bound EX

∣∣∣
ε,s

p(T )
2πl /T −

s
p(T )

2πl /T

∣∣∣2
:

EX

∣∣∣
ε,s

p(T )
2πl /T −

s
p(T )

2πl/T

∣∣∣2 ≤ 3|
s
X̃ (T )

2πl /T (τ)|2 EX |ε̃ (T )
−2πl /T (k)|2

+ 3 EX |ε̃ (T )
2πl /T ( j )ε̃ (T )

−2πl /T (k)|2

+ 3|
s
X̃ (T )

−2πl /T (σ)|2 EX |ε̃ (T )
2πl /T ( j )|2

≤ 3C1

[
|
s
X̃ (T )

2πl /T (τ)|2 +|
s
X̃ (T )

−2πl /T (σ)|2
]
+3C2,

where C1 and C2 are defined above. Since |X̃ (T )
ω (τ)|2 = |p(T )

ω (τ,τ)|, Propo-
sition 3.4.4, Remark 3.5.5 and (3.8.1) yield that

∫
E |

s
X̃ (T )

2πl /T (τ)|2dτ=O(1).
Using the tower property, we obtainÏ

E
∣∣∣
ε,s

p(T )
2πl/T −

s
p(T )

2πl /T

∣∣∣2 ≤O(C1)+O(C2),

uniformly in l = 1, . . . ,T −1, under the assumptions of this Theorem. Thus

Ï
E
∣∣∣ε,sf (T )

ω − sf (T )
ω

∣∣∣2 ≤O(T −1) [O(C1)+O(C2)] ·
T−1∑
l=0

[W (T )(ω−2πl/T )]2

=O(T −1) [O(C1)+O(C2)]O(T BT )
∥∥W (T )

∥∥2
∞

(at most O(T BT ) non-zero summand)

=O(B−1
T ) [O(C1)+O(C2)] (by Lemma 3.12.18)

=O(B−1
T )

[
O(T 2b4)+O(c1b)+O(γ2)+

+O(T b2)O(γ2 +b2)+O(b4)+O(γ4)+O(T −1c1)
]

,

uniformly in ω. Hence we obtain the bound on the expectation of first
summand of (3.8.2).
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We now turn to the second summand of (3.8.2). Using the decomposition

E
∣∣

sf (T )
ω − f (T )

ω

∣∣2 = cov
(

sf (T )
ω − f (T )

ω , sf (T )
ω − f (T )

ω

)+ ∣∣ E[
sf (T )
ω − f (T )

ω

]∣∣2
,

the covariance term can be written as sums and differences of four terms
of the form

cov
(
f (T )
ω (σ1,σ2), f (T )

ω (σ3,σ4)
)

,

for some σl ’s. The important thing here is that each of these terms can
be bounded in L2—independently of the σl ’s—using Corollary 3.5.3 and
Proposition 3.5.4:

cov
(

sf (T )
ω − f (T )

ω , sf (T )
ω − f (T )

ω

)=
O(B−2

T T −1)+O(T −1), ω ∈ [−π,π],

O(B−1
T T −1), ω ∈ [BT ,π−BT ],

in L2, where the bound is uniform in ω in both cases. The second bound
will be useful for the last statement of the Theorem. Using the decomposi-
tion

∫ π
0 = ∫ BT

0 +∫ π−BT
BT

+∫ π
π−BT

, we get∫ π

0

Ï ∣∣cov
(

sf (T )
ω − f (T )

ω , sf (T )
ω − f (T )

ω

)∣∣dω=O(B−1
T T −1),

and

sup
ω

Ï ∣∣cov
(

sf (T )
ω − f (T )

ω , sf (T )
ω − f (T )

ω

)∣∣=O
(
B−2

T T −1) .

In order to bound
∣∣∣ E[

sf (T )
ω − f (T )

ω

]∣∣∣2
, we use Proposition 3.5.1 and Lemma 3.12.13

(with p = 1):Ï ∣∣ E[
sf (T )
ω − f (T )

ω

]∣∣2 ≤ 4
Ï ∣∣

sfω− fω
∣∣2 +O(B 2

T )+O(T −2)+O(BT T )−2,

uniformly in ω. Thus

sup
ω

Ï ∣∣ E[
sf (T )
ω − f (T )

ω

]∣∣2 ≤ 4sup
ω

|||sFω−Fω|||22+O(B 2
T )+O(T −2)+O(BT T )−2.

The quantity |||sFω−Fω|||22 =
Î ∣∣

sfω− fω
∣∣2 is in fact the squared distance

between sfω and fω in the space L2([0,1]2,C). Under (3.8.1), fω(τ,σ) is
uniformly continuous in ω,τ,σ; since sfω is a step-wise approximation of
fω, we obtain

sup
ω∈[−π,π]

|||sFω−Fω|||22 → 0, M →∞.

The proof is completed by piecing all these results together.

Remark 3.8.5. The use of Proposition 3.5.4 was valid in this context, but
requires some attention. Indeed, it relies on Lemma 3.12.21, applied to
g(τ,σ)(α) = sf (T )

α (τ,σ). Remark 3.12.22 tells us that the convergence of the
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convolution integral depends on the uniform continuity parameter δ(ε),
which here will depend on the size of the sampling grid M = M(T ); in other
words, δ(ε) = δ(ε, M). But notice that since (3.8.1) holds,∥∥

sfω1 − sfω2

∥∥
2 ≤ sup

0≤τ,σ≤1

∣∣
sfω1 (τ,σ)− sfω2 (τ,σ)

∣∣
= sup
τ,σ=τ1,...,τM

∣∣fω1 (τ,σ)− fω2 (τ,σ)
∣∣

≤ sup
0≤τ,σ≤1

∣∣fω1 (τ,σ)− fω2 (τ,σ)
∣∣ ,

hence we can choose a δ(ε) that is independent of M, and the application
of Proposition 3.5.4 is valid.

3.9 Numerical Simulations

In order to probe the finite sample performance of our estimators (in
terms of IMSE), we have performed numerical simulations on stationary
functional time series admitting a linear representation

X t =
10∑

s=0
Asεt−s .

We have taken the collection of ‘innovation’ functions {εt } to be inde-
pendent Wiener processes on [0,1], which we have represented using a
truncated Karhunen–Loève expansion:

εt (τ) =
1000∑
k=1

ξk,t

√
λk ek (τ).

Here λk = 1/[(k −1/2)2π2], ξk,t are independent standard Gaussian ran-
dom variables and ek (τ) =p

2sin[(k −1/2)πτ] is orthonormal system in
L2([0,1],R) (Adler (1990)). We have constructed the operators As so that
their image be contained within a 50-dimensional subspace of L2 ([0,1],R),
spanned by an orthonormal basis ψ1, . . . ,ψ50. Representing εt in the ek

basis, and As in the ψm ⊗2 ek basis, we obtain a matrix representation of
the process X t as Xt =∑10

s=0 Asεt−s , where Xt is a 50×1 matrix, each As is
a 50×1000 matrix, and εt is a 1000×1 matrix.
We simulated a stretch of X t , t = 0, . . .T −1 for T = 2n , with n = 7,8, . . . ,15.
Typical functional data sets would range between T = 26 and T = 28 data
points. We constructed the matrices As , as random Gaussian matrices
with independent entries, such that elements in row j where N (0, j−2α)
distributed. When α = 0, the projection of each εt onto the subspace
spanned by eachψm ,m = 1, . . . ,50 has (roughly) a comparable magnitude.
A positive value of α, e.g. α= 1 means that the projection of εt onto the
subspace spanned by ψ j will have smaller magnitude for larger j ’s.
For comparison purposes, we also carried out analogous simulations, but
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with λk = 1, that is, the variance of the innovations εt being equal to one
in each direction en ,n = 1, . . . ,1000. In the sequel, we will refer to these as
the simulations with “white noise innovations”, and to the previous ones
as “Wiener innovations”. The white noise process is, of course, not a true
white noise process, but a projection of a white noise process. However, it
does represent a case of a “rough" innovation process, which we present
here as an extreme scenario.

For each T , we generated 200 simulation runs which we used to compute
the IMSE by approximating the integral

2
∫ π

0
E
∣∣∣∣∣∣Fω−F (T )

ω

∣∣∣∣∣∣2
2dω

by a weighted sum over the finite grid Γ= {π j /10; j = 0, . . . ,9}. We chose
BT = T −1/5 (e.g. Grenander & Rosenblatt (1957, Par. 4.7), Brillinger (2001,
Par. 7.4)) and W (x) to be the Epanechnikov kernel (e.g. Wand & Jones
(1995)), W (x) = 3

4 (1− x2) if |x| < 1, and zero otherwise. The results are
shown on a log-log scale in Figure 3.2, for α= 2. The slopes of the least
square lines passing through the medians of the simulation results show
that I MSE(F (T )) ∝ T β, with β≈−0.797 for the white noise innovations,
and β≈−0.796 for the Wiener innovations. According to Theorem 3.6.2,
the decay of the I MSE(F (T )) is bounded by

C1T −2/5 +C2T −4/5 ≈C1T −0.4 (if T is large),

for some constants C1,C2.

In order to gain a visual appreciation of the accuracy of the estimators, we
construct plots to compare the true and estimated spectral density kernels
in Figures 3.3 and 3.4, for the Wiener and white noise cases, respectively.
For practical purposes, we set α= 2, as for the simulation of the IMSEs.
We simulated X t = A0εt + A1εt−1, where εt (τ) lies on the subspace of
L2([0,1],R) spanned by the basis e1, . . . ,e100, and the operators A0, A1 lie
in the subspace spanned by (ψm ⊗2 ek )m=1,...,51;k=1,...,100. Since the target
parameter is a complex-valued function defined over a two-dimensional
rectangle, some information loss must be incurred when representing it
graphically. We chose to suppress the phase component of the spectral
density kernel, plotting only its amplitude, |fω(τ,σ)|, for all (τ,σ) ∈ [0,1]2

and for selected frequencies ω (the spectral density kernel is seen to be
smooth in ω, so this does not entail a significant loss of information).
For various choices of sample size T , we have replicated the realisation
of the process, and the corresponding kernel density estimator for the
particular frequency. Each time, we plotted the contours in superposition,
in order to be able to visually appreciate the variability in the estimators:



Figure 3.1 – Plots of the functional linear process used for the simulation of the IMSE. The plots in the top row
are for the linear process with “Wiener noise”, and the bottom ones are with “white noise”. In each case we
have a perspective plot, which illustrates the direction of time, and a superposition plot, where the temporal
dimension is suppressed.
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Figure 3.2 – Results of the simulated ISE on a log-log scale, with α= 2. The upper and lower plots correspond
to the Wiener Innovations and the White Noise Innovation setups, respectively. The dots correspond to
the median of the results of the simulations, and the lines are the least squares lines of the medians. The
boxplots summarise the distribution of the ISE for the 200 simulation runs. Though the ranges of the y-axes
are different, the scales are the same, and the two least square lines are indeed almost parallel.



Figure 3.3 – Contour plots for the amplitude of the true and estimated spectral density kernel when the
innovation process consists of Wiener processes. Each row corresponds to a different frequency (ω= kπ/5,
k = 0,1, ...,4, from top to bottom). The first column contains the contour plots of the true amplitudes of
the kernel at each corresponding frequency. The rest of the columns correspond to the estimated contours
for different sample sizes (T = 20,100,1000 from left to right). Twenty estimates, corresponding to twenty
replications of the process, have been superposed in order to provide a visual illustration of the variability.
The contours plotted always correspond to the same level curves and use the same colour-coding in each
row.



Figure 3.4 – Contour plots for the amplitude of the true and estimated spectral density kernel when the inno-
vation process consists of white noise processes. Each row corresponds to a different frequency (ω= kπ/5,
k = 0,1, ...,4, going from top to bottom). The first column contains the contour plots of the true amplitudes
of the kernel at each corresponding frequency. The rest of the columns correspond to the estimated contours
for different sample sizes (T = 20,100,1000 from left to right). Twenty estimates, corresponding to twenty
replications of the process, have been superposed in order to provide a visual illustration of the variability.
The contours plotted always correspond to the same level curves and use the same colour-coding in each
row.
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tangled contour lines where no clear systematic pattern emerges signify a
region of high variability, whereas aligned contour lines that adhere to a
recognisable shape represent regions of low variability. As is expected, the
“smoother" the innovation process, the less variable the results appear to
be, and the variability decreases for larger values of T .

3.10 Mixing, Tightness and Projections

Our results on the asymptotic Gaussian representations of the discrete
Fourier transform and the spectral density estimator (Theorems 3.3.4
and 3.6.5) effectively rest upon two sets of mixing conditions: (1) the
summability of the nuclear norms of the autocovariance operators (at
various rates), and (2) the summability of the cumulant kernels of all
orders (at various rates). The roles of these two sets of mixing condi-
tions are distinct. The first is required in order to establish tightness of
the sequence of discrete Fourier transforms and spectral density estima-
tors of the underlying process. Tightness allows one to then apply the
Cramér–Wold device, and to determine the asymptotic distribution by
considering finite-dimensional projections (see Section C.2, Lemma C.2.3,
and Corollary 3.6.4). The role of the second set of mixing conditions,
then, is precisely to allow the determination of the asymptotic law of
the projections, thus identifying the stipulated limiting distribution via
tightness.

Therefore, in principle, one can replace the second set of mixing condi-
tions with a set of conditions that allow for the discrete Fourier transforms
and spectral density estimators of the vector time series of the projections
to be asymptotically Gaussian, jointly in any finite number of frequencies.
Our approach was to generalize the cumulant multivariate conditions of
Brillinger (2001), which do not require structural assumptions further to
stationarity. Alternatively, one may pursue generalizations of multivariate
conditions involving α-mixing and summable cumulants of order 2,4,
and 8 as in Hannan (1970, Chapter IV, Par. 4) and Rosenblatt (1984, 1985),
though α-mixing can also be a strong condition. Adding more structure,
e.g. in the context of linear processes, one can focus on extending weaker
conditions requiring finite fourth moments and summable coefficients
(Hannan 1970, Anderson 1994).

For the case of non-linear moving-average representations of the form

ξt =G(εt ,εt−1, . . .),

where G is a measurable function and {ε j } are i.i.d. random variables,
several results exist; however, none of them are (yet) established for vec-
tor time series. For instance Shao & Wu (2007) show that if the second
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moment of ξt is finite and

∞∑
k=0

√
E | E [ξk −ξk+1|F0]|2 <∞,

where F0 is the sigma-algebra generated by {ε0,ε−1, . . .}, then the discrete
Fourier transforms of ξt are asymptotically Gaussian, jointly for a finite
number of frequencies. Furthermore, Shao & Wu (2007) establish the
asymptotic normality of the spectral density estimator at distinct frequen-
cies under the moment condition E |ξt |4+δ <∞, for some δ> 0, and the
following coupling condition: there exist α> 0, C > 0 and ρ ∈ (0,1) such
that

E |ξt −ξ′t |α <Cρt , t = 0,1, . . . , (3.10.1)

where ξ′t = G(εt , . . . ,ε1,ε′0,ε′−1, . . .) and (ε′k )k∈Z is an i.i.d. copy of (εk )k∈Z.
Notice that (3.10.1) is related to (in fact stronger than)
the Lp -m-approximability condition of Hörmann & Kokoszka (2010). Un-
der the weaker conditions E |ξt |4 <∞, and

∞∑
t=0

(
E |ξt − ξ̌t |4

)1/4 <∞,

where ξ̌t =G(. . . ,ε−1,ε′0,ε1, . . . ,εt ) and ε′0 is an i.i.d. copy of ε0, Liu & Wu
(2010) establish that the spectral density estimator at a fixed frequency is
asymptotically Gaussian. The idea behind these coupling conditions is
to approximate the series ξt by m-dependent series, for which derivation
of asymptotic results is easier. We also mention that, under milder con-
ditions, Peligrad & Wu (2010) establish that for almost all ω ∈ (0,2π), the
discrete Fourier transform at ω is asymptotically normal.
The mixing conditions pursued in this chapter have the advantage of not
requiring additional structure, at the price of being relatively strong if
additional structure could be assumed. For example, if a process is linear,
the cumulant conditions will be satisfied provided all moments exist and
the coefficient operators are summable in an appropriate sense, as shown
in the results below (see in particular Remark 3.10.3). As mentioned above,
we conjecture that four moments and summability of the coefficients
would suffice in the linear case, however a more thorough study of mixing
conditions for the linear case is outside the scope of the present thesis.

Proposition 3.10.1.
Let l ≥ 1, or l = 0 be a constant, and let εt , t = 0,±1, . . . be a k-order sta-
tionary (see Definition 3.2.2) sequence of random elements of H satisfying
E‖ε0‖k <∞, and ‖·‖π is defined in

Section A.3.2 on

page 225∑
t1,...,tk−1∈Z

(
1+|t j |l

)∥∥cum
(
εt1 , . . . ,εtk−1 ,ε0

)∥∥
π <∞ (3.10.2)

for all j = 1, . . . ,k −1.
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If (As) is a sequence of bounded operators on H, satisfying∑
s∈Z

(1+|s|l )|||As |||∞ <∞, (3.10.3)

then the (filtered) series
X t =

∑
s∈Z

Asεt−s

satisfies ∑
t1,...,tk−1∈Z

(
1+|t j |l

)∥∥cum
(
X t1 , . . . , X tk−1 , X0

)∥∥
π <∞. (3.10.4)

for all j = 1, . . . ,k −1.

Proposition 3.10.2.

The statement of Proposition 3.10.1 holds when replacing all the projective
norms ‖·‖π by the Hilbert tensor norm ‖·‖ in (3.10.2) and (3.10.4).

Remark 3.10.3. 1. The sample spectral density operators of a filtered
series X t =∑

s∈Z Asεt−s satisfying the conditions of Proposition 3.10.1
for k = 2 and k = 4 will be tight.

2. If (εt ) is an i.i.d. sequence, then (3.10.2) reduces to E‖ε0‖k <∞, by
Proposition 3.12.8. In particular, if E‖ε0‖k <∞ for all k ≥ 1, and
(3.10.3) holds for l = 1, then the linear process X t = ∑

s∈Z Asεt−s

satisfies the conditions of Theorems 3.3.4, 3.6.5 and 3.7.3.

Proof of Propositions 3.10.1 and 3.10.2. We will only prove Proposition 3.10.1,
since the proof of Proposition 3.10.2 follows the exact same argument,
with ‖·‖π replaced by ‖·‖ everywhere.

Using Propositions 3.12.10 and 3.12.11, we get

∑
t1,...,tk−1∈Z

(
1+|t j |l

)∥∥cum
(
X t1 , . . . , X tk−1 , X0

)∥∥
π

= ∑
t1,...,tk−1∈Z

(
1+|t j |l

)∥∥∥∥∥ ∑
s1,...,sk−1∈Z

(
As1 ⊗π · · ·⊗π Ask

)
cum

(
εt1−s1 , . . . ,εtk−1−sk−1 ,ε−sk

)∥∥∥∥∥
π

≤ ∑
t1,...,tk−1∈Z

(
1+|t j |l

) ∑
s1,...,sk−1∈Z

∣∣∣∣∣∣As1 ⊗π · · ·⊗π Ask

∣∣∣∣∣∣∞∥∥cum
(
εt1−s1 , . . . ,εtk−1−sk−1 ,ε−sk

)∥∥
π

≤ ∑
t1,...,tk−1∈Z

(
1+|t j |l

) ∑
s1,...,sk−1∈Z

∣∣∣∣∣∣As1

∣∣∣∣∣∣∞ · · · ∣∣∣∣∣∣Ask

∣∣∣∣∣∣∞∥∥cum
(
εt1−s1 , . . . ,εtk−1−sk−1 ,ε−sk

)∥∥
π

= ∑
s1,...,sk−1∈Z

∣∣∣∣∣∣As1

∣∣∣∣∣∣∞ · · · ∣∣∣∣∣∣Ask

∣∣∣∣∣∣∞ ∑
t1,...,tk−1∈Z

(
1+|t j |l

)∥∥cum
(
εt1−s1 , . . . ,εtk−1−sk−1 ,ε−sk

)∥∥
π
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Making the changes of variables ul = tl − sl + sk , for l = 1, . . . ,k −1, we get

∑
t1,...,tk−1∈Z

(
1+|t j |l

)∥∥cum
(
X t1 , . . . , X tk−1 , X0

)∥∥
π

= ∑
s1,...,sk−1∈Z

∣∣∣∣∣∣As1

∣∣∣∣∣∣∞ · · · ∣∣∣∣∣∣Ask

∣∣∣∣∣∣∞ ∑
u1,...,uk−1∈Z

(
1+|u j + s j − sk |l

)
×∥∥cum

(
εu1−sk , . . . ,εuk−1−sk ,ε−sk

)∥∥
π

Using Jensen’s inequality and the k-stationarity of εt , we get

≤ ∑
s1,...,sk−1∈Z

∣∣∣∣∣∣As1

∣∣∣∣∣∣∞ · · · ∣∣∣∣∣∣Ask

∣∣∣∣∣∣∞ ∑
u1,...,uk−1∈Z

(
1+2l−1|u j |l +2l−1|s j |l +2l−1|sk |l

)
×∥∥cum

(
εu1 , . . . ,εuk−1 ,ε0

)∥∥
π

<∞,

since (3.10.2) and (3.10.3) hold.

3.11 Outlook

In this chapter, we have given some theory on the estimation of the spec-
tral density operators. The basic idea was to take the functional discrete
Fourier transforms of the data, then take its empirical operator to form
the periodogram operators, which are then smoothed with a kernel to
form consistent estimators of the spectral density operators. We have
also seen that the eigenstructure of the sample spectral density operators
form consistent estimators of the eigenstructure of the spectral density
operators. This in turn could be used in practice to approximate a func-
tional series by truncation of the Cramér–Karhunen–Loève, introduced in
Chapter 2. The sample spectral density operators could also be used for
other purposes, such as for classification, clustering, or prediction.

Since Functional Data are usually observed on a grid, and possibly con-
taminated by some noise, we studied the consistency of the sample spec-
tral density operators constructed on the basis of such observations, and
gave some results relating the mean/variance of the observation noise
to the stretch of the series and the bandwidth parameter. The setting we
chose was general enough to be applicable to various smoothing tech-
niques (for turning the discrete observations into functional data). Exten-
sions to the setup of sparsely observed functional time series would be of
interest.
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3.12 Some Technical Results for this Chapter

This section contains some technical results that were used in this Chap-
ter.

3.12.1 Complex Gaussian Random Elements

If X is a Gaussian random element of the real Hilbert space HR, with mean
µ and covariance operator C = E

[
(X −µ)⊗2(X −µ)

]
, we will write X ∼

NHR

(
µ,C

)
. If H is a complexified Hilbert space,See Section A.2.3 on

page 221 for the

definition of

complexified Hilbert

space

the covariance of a ran-
dom element X ∈ H satisfying E‖X ‖2 < ∞ is defined by
E
[
(X −µ)⊗2(X −µ)

]
, whereµ= EX . In the case H =Cd , the covariance of

a random element X ∈Cd is given by E
[
(X −µ)(X −µ)†

]= E
[

(X −µ)(X −µ)T
]

.

In particular, this implies that the variance of a random element X ∈C is

var(X ) = E
[|X − EX |2].

We now define the notion of complex Gaussian random vector, which will
be used in this Chapter.

Definition 3.12.1 (e.g. Picinbono (1996), Schreier & Scharf (2010)).
A random vector Z = X + iY ∈ Cd , where X =ℜ(Z ) ∈ Rd and Y = ℑ(Z ) ∈
Rd , is said to follow the complex Gaussian distribution if the vector
(X T,Y T)T ∈ R2d follows a multivariate Gaussian distribution. The dis-
tribution of a complex Gaussian random vector Z ∈Cd is entirely charac-
terized by the following parameters:

µ= E [Z ],

Γ= E
[

(Z −µ)(Z −µ)†
]
= E

[
(Z −µ)⊗2(Z −µ)

]
,

C = E
[

(Z −µ)(Z −µ)T
]
= E

[
(Z −µ)⊗2 (Z −µ)

]
.

The parameters µ,Γ,C are called the mean, the covariance matrix and the
relation matrix, respectively, and we write Z ∼NCd

(
µ,Γ,C

)
.

If C = 0, then Z is said to follow a circular complex Gaussian distribution ,
and we write either Z ∼NCq

(
µ,Γ,0

)
, or Z ∼NCq

(
µ,Γ

)
.

Assume that µ= 0, we have

Γ= ( E [X ⊗2 X ]+ E [Y ⊗2 Y ])+ i ( E [Y ⊗2 X ]− E [X ⊗2 Y ]) ,

and

C = ( E [X ⊗2 X ]− E [Y ⊗2 Y ])+ i ( E [Y ⊗2 X ]+ E [X ⊗2 Y ]) .

We therefore get the following Lemma:

Lemma 3.12.2.
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Suppose Z = X + iY ∈Cd is a random vector, with mean zero, covariance
matrix Γ and relation matrix C . Then

E [X ⊗2 X ] = 1

2
ℜ (Γ+C ) , E [Y ⊗2 Y ] = 1

2
ℜ (Γ−C ) .

E [X ⊗2 Y ] = 1

2
ℑ(C −Γ), E [Y ⊗2 X ] = 1

2
ℑ (C +Γ) .

We also mention some useful properties:

1. If ℜ (Γ−C ) = 0, then Y = 0 almost surely, and Z is almost surely a
real vector.

2. If Z is circular (i.e. C = 0) and d = 1, then ℜ(Z ) and ℑ(Z ) are uncor-
related, and have the same variance.

3. If Z = (Z1, Z2, . . . , Zq ) ∈Cq is a complex Gaussian random element,
with covariance matrix Γ= (Γi j ) and relation matrix C = (Ci j ). Let
I , J ⊂ {

1, . . . , q
}

with I ∩ J =;, define ZI = (Zi )i∈I , and similarly for
ZJ . Then,[

ZI is independent of ZJ
] ⇐⇒ [

Γi j = 0 =Ci j , ∀i ∈ I , j ∈ J
]

.

The last property mentionned in the Lemma tells us that two entries Zq

and Zr of a complex Gaussian vector Z = (Z1, . . . , Zq ) are independent if,

and only if, E
[

Zq Zr

]
= 0 and E

[
Zq Zr

] = 0, or in other words, if their

covariance and relation vanishes. This motivates the following definition:

Definition 3.12.3.

Two complex random variables Z1, Z2 ∈C are said to be strongly uncorre-

lated if E
[

Z1Z2

]
= 0 and E [Z1Z2] = 0. If only the first equality holds, then

Z1 and Z2 are uncorrelated.

We now define complex Gaussian random elements in a general complex-
ified Hilbert space.

Definition 3.12.4.

A random element Z of a complexified Hilbert space H is said to follow a
complex Gaussian distribution if E‖Z‖2 <∞, and all its finite dimensional
projections follow compatible complex Gaussian distribution, i.e., for all
ϕ1, . . . ,ϕJ ∈ H, and all J = 1,2, . . ., the random vector(〈

Z ,ϕ1
〉

, . . . ,
〈

Z ,ϕJ
〉) ∈CJ

follows a Gaussian distribution NCJ

(
µ,Γ,C

)
satisfying, for all i , j ∈ {1,2, . . . , J },
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the following compatibility conditions

µi =
〈

m,ϕi
〉

,

Γi j =
〈
Gϕ j ,ϕi

〉
,

Ci j =
〈
Cϕ j ,ϕi

〉
,

where µ= (µ1, . . . ,µJ ), Γ= (Γi j ), C = (Ci j ) and

m = E [Z ],

G = E [(Z −m)⊗2(Z −m)] ∈S1(H),

C = E
[

(Z −m)⊗2 (Z −m)
]
∈S1(H).

We write Z ∼ NH (m,G ,C ). If C = 0, we say that Z follows a circular
complex Gaussian distribution , and we write Z ∼ NH (m,G ,0) or Z ∼
NH (m,G ).

3.12.2 Cumulants

3.12.2.1 Cumulants of Random Variables

We recall the definition of a cumulant for complex valued random vari-
ables:

cum(Y1, . . . ,Yk ) =
∑
ν

(−1)p−1(p −1)!
p∏

l=1
E

[ ∏
j∈νl

Y j

]
,

where the summation extends over all unordered partitions

ν= (ν1, . . . ,νp ), p = 1, . . . ,k,

of {1, . . . ,k}. The following result is found in Rosenblatt (1985, p.34):

Lemma 3.12.5.
If E |∏ j∈J Y j | <∞ for all subset of indices J ⊂ {1, . . . ,k},

E [Y1 · · ·Yk ] =
∑
ν

p∏
l=1

cum
(
Y j ; j ∈ νl

)
, (3.12.1)

where the sum extends over all unordered partitions ν = (ν1, . . . ,νp ) of
{1, . . . ,k}.

This result tells us that the k-th order cumulant can be thought of as a
generalization of the covariance. Indeed, rewriting (3.12.1), we get

cum(Y1, . . . ,Yk ) = E [Y1 · · ·Yk ]−
∑

ν;p 6=1

p∏
l=1

cum
(
Y j ; j ∈ νl

)
, (3.12.2)

which gives the intuition that the cumulant of order k is equal to the k-th
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moment, with all lower-order dependencies removed.

3.12.2.2 Cumulants of Random Elements of Hilbert spaces

We now define cumulants for random elements of Hilbert spaces: Let
(H ,‖·‖) be a separable Hilbert space, and for k a positive integer, let Lk =
Lk (Ω, H ,P) be the Banach space of random elements Y ∈ H with norm See Chapter B on

page 229 for the

definition of the space

Lk (Ω, H ,P)
‖Y ‖Lk = (E‖Y ‖k )1/k <∞.

Proposition 3.12.6.

For any (random) elements Y1, . . . ,Yk ∈ Lk , we define their k-th order cu-
mulant cumk (Y1, . . . ,Yk ) ∈⊗k

j=1 H as the unique element that satisfies

〈
cumk (Y1, . . . ,Yk ) ,ϕ1⊗·· ·⊗ϕk

〉= cum
(〈

Y1,ϕ1
〉

, . . . ,
〈

Yk ,ϕk
〉)

, (3.12.3)

∀ϕ1, . . . ,ϕk ∈ H, and where the function cum(·) on the right-hand side is
the usual cumulant function for complex random variables.

Furthermore, the mapping

cumk (·) : Lk ×·· ·×Lk → k⊗
j=1

H

is a bounded multilinear mapping, i.e., it is linear in each coordinate, and

‖cumk (Y1, . . . ,Yk )‖ ≤ (k −1)!Bk‖Y1‖Lk · · ·‖Yk‖Lk ,

where Bk is the k-th Bell number, giving the number of partitions of a set
of size k. We sometimes write cum(·) instead of cumk (·).

Proof. Let H k denote the k-fold Cartesian product of H . Fix t1, . . . , tk ∈Z.
We define the multilinear functional G : H j →C by

G(ϕ1, . . . ,ϕk ) = cum
(〈

Y1,ϕ1
〉

, . . . ,
〈

Yk ,ϕk
〉)

,

for all ϕ1, . . . ,ϕk ∈ H . It is clear that it is a multilinear functional. Further-
more, letting c = ∑

ν(p −1)!, where the sum extends over all unordered
partitions ν = (ν1, . . . ,νp ) of {1, . . . ,k}, and writing |ν j | for the size of the
partition ν j , we get (using Jensen’s and Hölder’s inequality)
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|G(ϕ1, . . . ,ϕk )| ≤∑
ν

(p −1)!
p∏

l=1
E

[ ∏
j∈νl

|〈Y j ,ϕ j
〉|]

≤∑
ν

(p −1)!
p∏

l=1

∏
j∈νl

E
[|〈Y j ,ϕ j

〉||νl |]1/|νl |

≤∑
ν

(p −1)!
p∏

l=1

∏
j∈νl

∥∥ϕ j
∥∥ E[∥∥Y j

∥∥|νl |
]1/|νl |

= ∥∥ϕ1
∥∥ · · ·∥∥ϕn

∥∥∑
ν

(p −1)!
p∏

l=1

∏
j∈νl

(
E
∥∥Y j

∥∥k
)1/k

= ∥∥ϕ1
∥∥ · · ·∥∥ϕn

∥∥∑
ν

(p −1)!
k∏

j=1

(
E
∥∥Y j

∥∥k
)1/k

= c
∥∥ϕ1

∥∥ · · ·∥∥ϕn
∥∥ k∏

j=1

(
E
∥∥Y j

∥∥k
)1/k

.

Furthermore, letting Ib = (en)n≥1 be an orthonormal basis of H , and using
Jensen’s and Hölder’s inequality, as well as Parseval’s identity, we get

( ∑
ϕ1,...,ϕk∈Ib

|G(ϕ1, . . . ,ϕk )|2
)1/2

≤ (k −1)!

( ∑
ϕ1,...,ϕk∈Ib

∣∣∣∣∣∑ν
p∏

l=1
E

[ ∏
j∈νl

〈
Y j ,ϕ j

〉]∣∣∣∣∣
2)1/2

using Jensen’s inequality on
∑
ν, we get

( ∑
ϕ1,...,ϕk∈Ib

|G(ϕ1, . . . ,ϕk )|2
)1/2

≤ (k −1)!
∑
ν

( ∑
ϕ1,...,ϕk∈Ib

∣∣∣∣∣ p∏
l=1

E

[ ∏
j∈νl

〈
Y j ,ϕ j

〉]∣∣∣∣∣
2)1/2

= (k −1)!
∑
ν

p∏
l=1

( ∑
ϕ j∈Ib : j∈νl

∣∣∣∣∣ E
[ ∏

j∈νl

〈
Y j ,ϕ j

〉]∣∣∣∣∣
2)1/2

again, using Jensen’s inequality on the expectation yields

( ∑
ϕ1,...,ϕk∈Ib

|G(ϕ1, . . . ,ϕk )|2
)1/2

≤ (k −1)!
∑
ν

p∏
l=1

E

( ∑
ϕ j∈Ib : j∈νl

∣∣∣∣∣ ∏
j∈νl

〈
Y j ,ϕ j

〉∣∣∣∣∣
2)1/2

= (k −1)!
∑
ν

p∏
l=1

E

[( ∏
j∈νl

∑
ϕ j∈Ib

∣∣〈Y j ,ϕ j
〉∣∣2

)1/2]

= (k −1)!
∑
ν

p∏
l=1

E

[ ∏
j∈νl

∥∥Y j
∥∥]

≤ (k −1)!
∑
ν

p∏
l=1

∏
j∈νl

[
E
∥∥Y j

∥∥|νl |
]1/|νl |
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≤ (k −1)!
∑
ν

p∏
l=1

∏
j∈νl

[
E
∥∥Y j

∥∥k
]1/k

≤ (k −1)!
∑
ν

k∏
j=1

∥∥Y j
∥∥

Lk

≤ (k −1)!
k∏

j=1

∥∥Y j
∥∥

Lk

(∑
ν

1

)

≤ (k −1)!Bk

k∏
j=1

∥∥Y j
∥∥

Lk ,

where Bk is the k-th Bell number, giving the number of partitions of a set
of size k. Therefore G is a Hilbert–Schmidt functional, and in particular it
is a weak Hilbert–Schmidt mapping, see e.g. Kadison & Ringrose (1997,
Theorem 2.6.4). Therefore, by the universal property of the Hilbert tensor
product, there exists a unique mapping continuous linear functional
G ′ : ⊗k

j=1 H →C such that

G ′(ϕ1⊗·· ·⊗ϕn) =G(ϕ1, . . . ,ϕn), ∀ϕ1, . . . ,ϕn ∈ H .

Now the Riesz representation Theorem tells us that there exists a unique
A ∈⊗k

j=1 H such that

G ′(·) = 〈., A〉.
Therefore cumk (Y1, . . . ,Yk ) = A is well defined. The linearity of cumk (·)
follows directly from the property (3.12.3) and the boundedness has al-
ready been shown since

‖cumk (Y1, . . . ,Yk )‖2 = ∑
ϕ1,...,ϕk∈Ib

|G(ϕ1, . . . ,ϕk )|2,

by Parseval’s equality.

Lemma 3.12.7.
Using the same notation as Proposition 3.12.6, if A1, . . . , Ak are bounded
operators on H, then

cum(A1Y1, . . . , Ak Xk ) =
(

A1
⊗̃ · · · ⊗̃ Ak

)
cum(Y1, . . . ,Yk ) .

Proof. The proof follows directly from (3.12.3), and is omitted.

We can also define elements of the form cum
(〈
ϕ,Y1

〉
,Y2, . . . ,Yk

) ∈ H⊗(k−1),
for ϕ ∈ H . This is done rigorously by defining, for any i1, . . . , is ∈ {1, . . . ,k}
and any ϕi1 , . . . ,ϕis ∈ H the element

cum
(
Y ′

1, . . . ,Y ′
k

) ∈ H⊗ (k−s)

where Y ′
ir
= 〈

ϕir ,Yir

〉
for r = 1, . . . , s, and Y ′

j = Y j if j 6∈ {i1, . . . , is}, to be the
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unique element of H⊗(k−s) satisfying〈
cum

(
Y ′

1, . . . ,Y ′
k

)
,ϕ j1 ⊗·· ·ϕ jk−s

〉= 〈
cum(Y1, . . . ,Yk ) ,ϕ1⊗·· ·⊗ϕk

〉
,

for all ϕ j1 , . . . ,ϕ jk−s ∈ H , where
{

j1, . . . , jk−s
}

is the complementary set of
indices {i1, . . . , is}, i.e.{

j1, . . . , jk−s
}= {1, . . . ,k} \ {i1, . . . , is} .

We now present a way of writing cumulants using the tensor product:

Proposition 3.12.8.

Let Y1, . . . ,Yk ∈ Lk . The cumulant can be defined via the tensor product as

cum(Y1, . . . ,Yk ) =
∑

ν=(ν1,...,νp )
(−1)p−1(p −1)! ·Permν−1

(
p⊗

l=1
E

[
⊗

j∈νl

Y j

])
,

(3.12.4)
and this definition is compatible with Definition 3.2.1. Furthermore, we
can view cum(·) as a bounded linear operator

cum(·) :
(
Lk

)⊗π k → H⊗π k . (3.12.5)

We will first give some intuition about why the operator Permν−1 (·) is im-
portant here. To understand why, recall that any partition ν= (ν1, . . . ,νp )
can also be viewed as a permutation ν : {1, . . . ,k} → {1, . . . ,k}, sending j to
ν( j ), where we write ν= (ν(1), . . . ,ν(l )). The inverse is denoted ν−1. Notice
that

p⊗
l=1

(
⊗

j∈νl

Y j

)
= Yν(1)⊗Yν(2)⊗·· ·⊗Yν(k).

Therefore we need to reorder the tensor product after having taken the
expectations, since we want the property〈

cum(Y1, . . . ,Yk ) ,ϕ1⊗ϕ2⊗·· ·⊗ϕk
〉= cum

(〈
Y1,ϕ1

〉
, . . . ,

〈
Yk ,ϕk

〉)
,

(3.12.6)

Proof of Proposition 3.12.8. It suffices to use the properties of Permν (·),
and the characterization (3.12.3) of the cumulant to show the compatibil-
ity with Definition 3.2.1.

Let us now show that cum(Y1, . . . ,Yk ) ∈ H⊗π k :

‖cum(Y1, . . . ,Yk )‖π ≤
∑

ν=(ν1,...,νp )
(p −1)! ·

∥∥∥∥Permν−1

(
p⊗

l=1
E

[
⊗

j∈νl

Y j

])∥∥∥∥
π

.
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Using the fact that the projective tensor product is isomorphically com-

mutative (see Section A.3.3),

‖cum(Y1, . . . ,Yk )‖π =
∑

ν=(ν1,...,νp )
(p −1)! ·

∥∥∥∥ p⊗
l=1

E

[
⊗

j∈νl

Y j

]∥∥∥∥
π

= ∑
ν=(ν1,...,νp )

(p −1)! ·
p∏

l=1

∥∥∥∥ E[
⊗

j∈νl

Y j

]∥∥∥∥
π

, (by (A.3.5))

Using the contraction property of the Bochner integral,

‖cum(Y1, . . . ,Yk )‖π ≤
∑

ν=(ν1,...,νp )
(p −1)! ·

p∏
l=1

E

∥∥∥∥ ⊗
j∈νl

Y j

∥∥∥∥
π

= ∑
ν=(ν1,...,νp )

(p −1)! ·
p∏

l=1
E

∏
j∈νl

∥∥Y j
∥∥, (by (A.3.5))

and using Hölder’s inequality,

‖cum(Y1, . . . ,Yk )‖π ≤
∑

ν=(ν1,...,νp )
(p −1)! ·

k∏
j=1

∥∥Y j
∥∥

Lk

<∞.

This shows that cum(·) :
(
Lk

)k → H⊗π k is bounded. Furthermore, we
already know that it is multilinear. Therefore, by the universal property of
the projective tensor products (A.3.9), we can view cum(·) as a bounded
linear operator (Lk )⊗π k → H⊗π k .

Corollary 3.12.9. Let s > 1 be an integer. If Y1, . . . ,Y2s ∈ L2s , then∣∣∣∣∣∣cumop(Y1, . . . ,Y2s)
∣∣∣∣∣∣

1 ≤ ‖cum(Y1, . . . ,Y2s)‖π <∞. (3.12.7)

Proof. We denoteΨ : H⊗ s ⊗π H⊗ s →S2(H⊗ s) the unitary operatorΨ(x⊗ y) =
x⊗2 y for x, y ∈ H⊗ s (see Proposition A.3.2). Also, we denote by ι : H⊗π s ,→
H⊗ s the continuous inclusion defined by linear extension of ι(⊗s

i=1 xi ) =
⊗s

i=1 xi for all simple tensors. Since cum(Y1, . . . ,Y2s) ∈ H⊗π 2s , and

H⊗π 2s = (
H⊗π s)⊗π (

H⊗π s) ,

we have
(ι⊗π ι)cum(Y1, . . . ,Y2s) ∈ H⊗ s ⊗π H⊗ s ,

and therefore Ψ (ι⊗π ι)cum(Y1, . . . ,Y2s) is well defined. Notice that

cumop(Y1, . . . ,Y2s) =Ψ (ι⊗π ι)cum(Y1, . . . ,Y2s) ,
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since the equality holds on all simple tensors. We therefore get,∣∣∣∣∣∣cumop(Y1, . . . ,Y2s)
∣∣∣∣∣∣

1 ≤ |||Ψ|||∞|||ι|||2∞‖cum(Y1, . . . ,Y2s)‖π

and the proof is finished by using the isometry property of Ψ, the fact that
|||ι|||∞ ≤ 1, and Proposition 3.12.8.

Proposition 3.12.10.
Let A1, . . . , Ak be bounded linear operators on H, and Y1, . . . ,Yk ∈ Lk . Then

(A1⊗π · · ·⊗π Ak )cum(Y1, . . . ,Yk ) = cum(A1Y1, . . . , Ak Yk ) . (3.12.8)

Proof.

(A1⊗π · · ·⊗π Ak )cum(Y1, . . . ,Yk )

= ∑
ν=(ν1,...,νp )

(−1)p−1(p −1)! ·
(

k⊗π
i=1

Ai

)
Permν−1

(
p⊗

l=1
E

[
⊗

j∈νl

Y j

])
,

=∑
ν

(−1)p−1(p −1)! ·Permν−1

(
Permν

(
k⊗π

i=1
Ai

)[
p⊗

l=1
E

[
⊗

j∈νl

Y j

]])
,

(by (A.3.11))

=∑
ν

(−1)p−1(p −1)! ·Permν−1

([
p⊗π

l=1

[
⊗π
j∈νl

A j

]][
p⊗

l=1
E

[
⊗

j∈νl

Y j

]])
.

Using the definition of the tensor of bounded operators, and the commu-

tativity of bounded operators with the expectation,

(A1⊗π · · ·⊗π Ak )cum(Y1, . . . ,Yk )

=∑
ν

(−1)p−1(p −1)! ·Permν−1

(
p⊗

l=1

[(
⊗π
j∈νl

A j

)
E

[
⊗

j∈νl

Y j

]])
,

=∑
ν

(−1)p−1(p −1)! ·Permν−1

(
p⊗

l=1

[
E

[(
⊗π
j∈νl

A j

)
⊗

j∈νl

Y j

]])
,

=∑
ν

(−1)p−1(p −1)! ·Permν−1

(
p⊗

l=1
E

[
⊗

j∈νl

A j Y j

])
,

= cum(A1Y1, . . . , Ak Yk )

Proposition 3.12.11.
Let As be bounded operators on H, satisfying∑

s∈Z
|||As |||∞ <∞.

Let εt , t = 0,±1, . . . be a k-order stationary sequence of random elements of
H such that E‖ε0‖k <∞ for some positive integer k,
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Define X (N )
t = ∑N

s=−N Asεt−s . Then, the linear process X t = ∑
s∈Z Asεt−s

has the following properties:

(i ) Lk convergence: limN→∞
∥∥∥X (N )

t −X t

∥∥∥
Lk

= 0, and E‖X t‖k <∞,

(i i )
∥∥cum

(
εt1 , . . . ,εtk

)∥∥
π <∞.

(i i i ) We have

cum
(
X t1 , . . . , X tk

)= ∑
s1,...,sk∈Z

(At1−s1 ⊗π · · ·⊗π Atk−sk )cum
(
εs1 , . . . ,εsk

)
,

where the convergence is in ‖·‖π.

Furthermore, X t is k-th order stationary.

Remark 3.12.12. Since the projective norm ‖·‖π is stronger than the Hilbert
tensor norm ‖·‖, the statements (i i ) and (i i i ) of the Proposition also hold
for the Hilbert tensor norm.

Proof of Proposition 3.12.11. 1. Let

X −(N )
t = X t −X (N )

t = ∑
|s|>N

Asεt−s ,

for the tail of the series of X t . Since

‖Asεt−s‖Lk ≤ |||As |||∞‖εt−s‖Lk ,

we get, by stationarity of εs ,∥∥∥X −(N )
t

∥∥∥
Lk

≤ ∑
|s|>N

‖Asεt−s‖Lk ≤
∑

|s|>N
|||As |||∞‖εt−s‖Lk = ‖ε0‖Lk

∑
|s|>N

|||As |||∞.

Therefore X (N )
t → X t in Lk as N →∞.

2. By Proposition 3.12.8, and by k-stationarity of εt , we get that∥∥∥cum
(
εt1,...,εtk

)∥∥∥
π
≤ c E‖ε0‖k <∞,

where c is a constant.

3. Let us show the next statement: using Proposition 3.12.8 and Propo-
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sition 3.12.10, we get

cum
(
X t1 , . . . , X tk

)= cum

(
lim

N1→∞
X (N1)

t1
, . . . , lim

Nk→∞
X (Nk )

tk

)
= lim

N1,...,Nk→∞
cum

( ∑
|s1|<N1

As1εt1−s1 , . . . ,
∑

|sk |<Nk

Askεtk−sk

)
= lim

N1,...,Nk→∞
∑

|s1|<N1

· · · ∑
|sk |<Nk

cum
(

As1εt1−s1 , . . . , Askεtk−sk

)
= lim

N1,...,Nk→∞
∑

|s1|<N1

· · · ∑
|sk |<Nk

(
As1 ⊗π · · ·⊗π Ask

)
cum

(
εt1−s1 , . . . ,εtk−sk

)
= ∑

s1,...,sk∈Z

(
As1 ⊗π · · ·⊗π Ask

)
cum

(
εt1−s1 , . . . ,εtk−sk

)
,

where there is no convergence problems since the last sum is bounded
by

c · E‖ε0‖k

(∑
s∈Z

|||As |||∞
)k

<∞.

The k-th order stationarity follows directly from property 3. This com-
pletes the proof.

3.12.3 Some Accessory Results

Lemma 3.12.13.

If
∫ ∞
−∞ |x|pW (x)d x <∞ and C(p,2) holds true, then∫
R

W (x)fω−xBT d x = fω+

+
p−1∑
k=1

(−1)k B k
T

k !

∂k fω
∂ωk

·
∫
R

xkW (x)d x +O(B p
T ),

in L2, and the error term is uniform in ω. Notice that since W is even, the
integral is zero if k is odd. The case p = 1 will be useful for consistent
estimation of fω: ∫

W (x)fω−xBT d x = fω+O(BT ), in L2,

the error term being uniform in ω.

Proof. In the following, all equalities are meant in the L2 sense with re-
spect to the variables τ,σ. Since for every ϕ ∈ L2([0,1],C), the mapping

ω 7→ ∂k

∂ωk

〈
fω,ϕ

〉
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is continuous, we can write the Taylor expansion of fω−xBT (τ,σ), with
respect to x at x = 0:

fω−xBT (τ,σ) = fω(τ,σ)−BT
∂fα(τ,σ)

∂α

∣∣∣
α=ω x +·· ·

+ (−1)p−1B p−1
T

(p −1)!

∂p−1fα(τ,σ)

∂αp−1

∣∣∣
α=ω xp−1

+Rp (x,ω,τ,σ),

where

Rp (x,ω,τ,σ) = (−1)p B p
T

p !

∂p fα(τ,σ)

∂αp

∣∣∣
α=ω−θx BT

xp ,

and θx ∈ [0, x]. This expression is bounded in L2 by

∥∥Rp (x,ω, ·, ·)∥∥2 ≤
B p

T

p !
sup
ω

∥∥∥∥ ∂p

∂ωp fω

∥∥∥∥
2
|x|p ,

which does not depend on ω. Hence we obtain

∫
R

W (x)fω−xBT d x = fω+
p−1∑
k=1

(−1)k B k
T

k !

∂k fω
∂ωk

·
∫
R

xkW (x)d x

+ B p
T

p !
sup
ω

∥∥∥∥ ∂p

∂ωp fω

∥∥∥∥
2

∫
R
|x|pW (x)d x︸ ︷︷ ︸

=O(B p
T )

,

and the error is uniform in ω.

Lemma 3.12.14.
Let x1, . . . , xn ; y1, . . . , yn be (complex or real) numbers bounded by K . Then∣∣x1x2 · · ·xn − y1 y2 · · · yn

∣∣≤ K n−1 ∑n
j=1 |x j − y j |.

Proof. Rewriting the expression in a suitable way yields the result:

∣∣x1x2 · · ·xn − y1 y2 · · · yn
∣∣= ∣∣∣∣∣ n∑

k=1

(
k−1∏
j=1

y j

n∏
l=k

xl −
k∏

j=1
y j

n∏
l=k+1

xl

)∣∣∣∣∣
≤

n∑
k=1

k−1∏
j=1

n∏
l=k+1

|y j xl ||xk − yk |

≤ K n−1
n∑

k=1
|xk − yk |.

Denote by V b
a (h) the total variation of a function h : [a,b] →C (Wheeden

& Zygmund 1977, Chapter 2.1).
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Lemma 3.12.15.
Let f , f1, . . . , fn : [a,b] → C be bounded in variation and bounded. Let
‖ f ‖∞ = supx∈[a,b] | f (x)|. Then,

(i) V b
a

(∏n
j=1 f j

)
≤∑n

i=1 V b
a ( fi )

∏
j 6=i ‖ f j‖∞.

(ii) Ifψ : [c,d ] → [a,b] is a strictly increasing bijection, V b
a ( f ) =V ψ(d)

ψ(c) ( f ) =
V d

c ( f ◦ψ). Ifψ : [c,d ] → [a,b] is a strictly decreasing bijection, V b
a ( f ) =

V c
d ( f ◦ψ).

(iii) For any a < c < b, we have V c
a ( f )+V b

c ( f ) =V b
a ( f ), and hence for any

a ≤ c ≤ d ≤ b, we have V d
c ( f ) ≤V b

a ( f ).

(iv) For any λ ∈C, V b
a (λ f ) = |λ|V b

a ( f ).

(v) Triangle inequality: V b
a ( f1 + f2) ≤V b

a ( f1)+V b
a ( f2).

(vi) If f is continuous on [a,b], f ′ exists on (a,b) and is Riemann inte-
grable on [a,b], V b

a ( f ) = ∫ b
a | f ′(x)|d x.

(vii) If f :R→C is 2π-periodic, and g (x) = f (ω− x) for some ω ∈R, then
V 2π

0 (g ) =V 2π
0 ( f ).

(viii) If V b
a ( f ) <∞, then f is bounded on [a,b].

We notice that the total variation has some of the properties of a norm.

Proof. Recall the definition of total variation: let Γ = {x0, . . . , xm} be a
partition of [a,b], that is,

a = x0 < x1 < ·· · < xm = b,

and define

SΓ( f ) =
m∑

i=1

∣∣ f (xi )− f (xi−1)
∣∣ .

The total variation of f between a and b is

V ( f ) = sup
Γ

SΓ( f ),

where the supremum is taken over all partitions Γ of [a,b].
Hence for any such partitions, and any f , g : [a,b] →C,

m∑
i=1

∣∣ f (xi )g (xi )− f (xi−1)g (xi−1)
∣∣≤ m∑

i=1

∣∣ f (xi )
[
g (xi )− g (xi−1)

]∣∣ · ∣∣g (xi−1)
[

f (xi )− f (xi−1)
]∣∣

≤ ‖ f ‖∞
m∑

i=1

∣∣g (xi )− g (xi−1)
∣∣+‖g‖∞

m∑
i=1

∣∣ f (xi )− f (xi−1)
∣∣

≤ ‖ f ‖∞V (g )+‖g‖V ( f ).
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Taking the supremum over all partitions yields

V ( f · g ) ≤ ‖ f ‖∞V (g )+‖g‖∞V ( f ).

We then obtain (i ) by induction.

For (i i ), first assume that ψ is a strictly increasing bijection. Therefore
{x0, . . . , xm} is a partition of [c,d ] if and only if {ψ(x0), . . . ,ψ(xm)} is a parti-
tion of [a,b]. Ifψ is a strictly decreasing bijection, {x0, . . . , xm} is a partition
of [c,d ] if and only if {ψ(xm),ψ(xm−1), . . . ,ψ(x0)} is a partition of [a,b].
Statement (i i ) is a direct consequence of these one-to-one correspon-
dences between the partitions of [a,b] and [c,d ].

Statements (i i i ), (vi ) and (vi i i ) are proven in Wheeden & Zygmund (1977,
Chapter 2.1).

For (i v), notice that

m∑
i=1

∣∣(λ f )(xi )− (λ f )(xi−1)
∣∣= |λ| ·

m∑
i=1

∣∣ f (xi )− f (xi−1)
∣∣ .

For (v), notice that∣∣( f1 + f2)(xi )− ( f1 + f2)(xi−1)
∣∣≤ ∣∣ f1(xi )− f1(xi−1)

∣∣+ ∣∣ f2(xi )− f2(xi−1)
∣∣ .

Taking the sum over i and the supremum on all partitions {x0, . . . , xm} of
[a,b] yields the (v).

For (vi i ), define g (x) = f (ω− x). Notice that V b
a ( f ) = V b+2π

a+2π ( f ) because
f is 2π-periodic. Hence without loss of generality, we can assume that
0 <ω< 2π. Using (i i i ) we obtain

V 2π
0 ( f ) =V ω

0 ( f )+V 2π
ω ( f ) =V ω+2π

2π ( f )+V 2π
ω ( f ) =V ω+2π

ω ( f ).

Choosing ψ(x) =ω−x, (i i ) yields

V ω+2π
ω ( f ) =V 0

−2π(g ) =V 2π
0 (g ).

We introduce the following condition, which will be used in the following
results:

T1 (Taper condition 1) Let h(u),−∞< u <∞ be a real function, which
is bounded, bounded in variation and with h(u) = 0 for |u| ≥ 1. We
denote by ‖h‖∞ its supremum, and by V 1

−1(h) its total variation
(between −1 and 1).
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Lemma 3.12.16.
Suppose ha1 , . . . ,hak satisfy T1, set h(T )

a j
(t ) = ha j (t/T ) and define H (T )

a1,...,ak
(ω) =∑

t∈Z
[∏k

j=1 h(T )
a j

(t )
]

exp(−iωt). We have the following inequality for all
u1, . . . ,uk−1 ∈Z:

∣∣∣∣∣∑t∈Zh(T )
a1

(t +u1) · · ·h(T )
ak−1

(t +uk−1)h(T )
ak

(t )exp(−iωt )−H (T )
a1,...,ak

(ω)

∣∣∣∣∣≤ K
(
|u1|+ · · ·+ |uk−1|

)
,

where K = (
max j=1,...,k ‖ha j ‖∞

)k−1 · (max j=1,...,k V 1
−1(ha j )

)
is independent

of ω.

Proof. Using Lemma 3.12.14, we obtain∣∣∣∣∣∑t∈Zh(T )
a1

(t +u1) · · ·h(T )
ak−1

(t +uk−1)h(T )
ak

(t )exp(−iωt )−H (T )
a1,...,ak

(ω)

∣∣∣∣∣
≤ ∑

t∈Z

∣∣h(T )
ak

(t )
∣∣ · ∣∣h(T )

a1
(t +u1) · · ·h(T )

ak−1
(t +uk−1)−h(T )

a1
(t ) · · ·h(T )

ak−1
(t )

∣∣
≤ ‖ha1‖∞

(
max

j=1,...,k−1
‖ha j ‖∞

)k−2

·
k−1∑
j=1

∑
t∈Z

∣∣∣h(T )
a j

(t +u j )−h(T )
a1

(t )
∣∣∣ .

Let us now bound
∑

t∈Z
∣∣∣h(T )

a j
(t +u j )−h(T )

a1
(t )

∣∣∣. For simplicity, we suppress

the indices. If u > 0,

∑
t∈Z

∣∣h(T )
a (t +u)−h(T )

a (t )
∣∣≤ u j−1∑

v=0

∑
t∈Z

∣∣h(T )
a (t + v +1)−h(T )

a (t + v)
∣∣

≤
u j−1∑
v=0

V T
−T (h(T )

a )

= |u j |V 1
−1(ha),

where we have used Lemma 3.12.15 for the last equality. If u < 0, we

simply replace
∑u j−1

v=0 with
∑0

u j+1, and the same bound holds. Hence

∣∣∣∣∣∑t∈Zh(T )
a1

(t +u1) · · ·h(T )
ak−1

(t +uk−1)h(T )
ak

(t )exp(−iωt )−H (T )
a1,...,ak

(ω)

∣∣∣∣∣≤ K
(
|u1|+ · · ·+ |uk−1|

)
.

We shall require the following lemma to quantify the approximation error
of integrals by Riemann sums.

Lemma 3.12.17.
Let h : [a,b] → R be a function of bounded variation. If ∆n = ∫ b

a h(t)d t −
b−a

n

∑n
j=1 h(a + (b −a) j /n), then |∆n | ≤ (b −a)

V b
a (h)
n . If the sum goes only

from 1 to (n −1), |∆n | ≤ (b −a)
V b

a (h)+h(b)
n .
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Proof. First let us prove the Lemma for f : [0,1] → R of bounded vari-
ation. Since f is of bounded variation, it is bounded and has a finite
number of discontinuities, and is hence Riemann integrable on [0,1]
(Wheeden & Zygmund 1977, see results (2.1), (2.8) and (5.54)). The fol-
lowing comes from Pólya & Szegő (1972, Pt.2, Chapter 1, problem 9). Set
∆′

n = ∫ 1
0 f (x)d x − 1

n

∑n
j=1 f ( j /n). Since

∫ 1

0
f (x)d x =

n∑
j=1

∫ j /n

( j−1)/n
f (x)d x =

n∑
j=1

∫ 1/n

0
f

(
j −1

n
+x

)
d x,

we obtain

|∆′
n | =

∫ 1/n

0

n∑
j=1

∣∣∣∣ f ( j /n)− f

(
j −1

n
+x

)∣∣∣∣d x

≤
∫ 1/n

0

n∑
j=1

{∣∣∣∣ f ( j /n)− f

(
j −1

n
+x

)∣∣∣∣+ ∣∣∣∣ f

(
j −1

n
+x

)
− f

(
j −1

n

)∣∣∣∣}d x

≤
∫ 1/n

0
V 1

0 ( f )d x = V 1
0 ( f )

n
.

For ∆n = ∫ b
a h(t)d t − b−a

n

∑n
j=1 h(a + (b − a) j /n), we use the change of

variables ψ(x) = (b −a)x +a, x ∈ [0,1] and we obtain

∆n = (b −a)

{∫ 1

0
(h ◦ψ)(x)d x − 1

n

n∑
j=1

(h ◦ψ)( j /n)

}
.

The previous results and Lemma 3.12.15 (ii) yield

|∆n | ≤ (b −a)V 1
0 (h ◦ψ)/n = (b −a)V b

a (h)/n.

The second statement of the Lemma follows trivially from this.

Lemma 3.12.18.
W (T )(x) is 2πperiodic,

∫ π
−πW (T )(x)dx = 1. Furthermore, if BT < 1, ‖W (T )‖∞ =

1
BT

‖W ‖∞, and we have V π−π(W (T )) = 1
BT

V π−π(W ).

Proof. Let us first prove that
∫ π
−πW (T )(x)d x = 1. Since∫ π

−π
W (T )(x)d x = ∑

j∈Z

∫ π

−π
1

BT
W

(
x +2π j

BT

)
d x,

the change of variables y = (x +2π j )/BT yields∫ π

−π
W (T )(x)d x = ∑

j∈Z

∫ (2 j+1)π/BT

(2 j−1)π/BT

W (y)d y =
∫
R

W (y)d y = 1.

If BT < 1, then for x ∈ [−π,π],W (T )(x) = 1
BT

W (x/BT ). The third statement
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follows directly because of the periodicity, and the last statement follows
from

V π
−π(W (T )) =V π/BT

−π/BT
(W /BT ) = 1

BT
V π
−π(W ).

We have used Lemma 3.12.15 and the fact that W (x) = 0 if |x| ≥ 1.

Using this lemma, we obtain

Lemma 3.12.19.
Provided BT → 0,

2π

T

T−1∑
s=1

W (T )(ω−2πs/T ) = 1+O(B−1
T T −1),

and the error is uniform in ω.

Proof. Set

∆n =
∫ π

−π
W (T )(ω−α)dα− 2π

T

T−1∑
s=1

W (T )(ω−2πs/T ),

=
∫ π

−π
W ′(T )(α)dα− 2π

T

T−1∑
s=1

W ′(T )(2πs/T ),

where W ′(T )(α) =W (T )(ω−α). Lemmas 3.12.15, 3.12.17 and 3.12.18 yield

|∆n | ≤ 2π

T
(V π

−π(W ′(T ))+‖W ′(T )‖∞) = 2π

BT T
(V π

−π(W )+‖W ‖∞),

which does not depend on ω, and is of order O(B−1
T T −1). Since∫ π

−π
W (T )(ω−α)dα= 1,

we obtain
2π

T

T−1∑
s=1

W (T )(ω−2πs/T ) = 1+O(B−1
T T −1),

and the error is uniform in ω.

Lemma 3.12.20.
Under condition C(p,2), for each k = 0,1, . . . , p:

∂k fω
∂ωk

= ∑
t∈Z

(−it )k e−iωt rt ,

and the convergence is L2, uniformly ω. Moreover,

sup
ω

∥∥∥∥∥ ∂k

∂ωk
fω

∥∥∥∥∥
2

<∞ k = 1,2, . . . , p.
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Proof. Since C(p,2) implies C(k,2) for k = 0,1, . . . , p, the result follows by
an iterative application of Rudin (1976, Theorem 7.17) to the projection of
the partial sums

N∑
t=−N

e−iωt rt .

Hence

sup
τ,σ,ω

∥∥∥∥∥ ∂k

∂ωk
fω

∥∥∥∥∥
2

≤∑
t

(1+|t |k )‖rt‖2 <∞.

The following Lemma is a straightforward extension of results on approxi-
mate identities (see Edwards 1967, §3.2) adapted to our framework:

Lemma 3.12.21 (Approximate identities).
Suppose KT ,T = 1,2, . . . is a sequence of functions defined on [−π,π] satis-
fying, as T →∞:

(i) supT

∫ π
−π |KT (α)|dα<∞,

(ii)
∫ π
−πKT (α)dα−→ 2π,

(iii) for all δ> 0,
∫
δ≤|α|≤π |KT (α)|dα→ 0.

Let E ⊂R be an interval, let

g : [−π,π]×E →C

be a function and, for each e ∈ E, define ge (ω) = g (ω,e). Let g ·(ω) denote
the function e 7→ ge (ω).
If the function ω 7→ g ·(ω) is uniformly continuous with respect to ‖·‖p ,
meaning that ∀ε> 0,∃δ> 0 such that

|ω1 −ω2| < δ =⇒ ∥∥g ·(ω1)− g ·(ω2)
∥∥

p < ε, (3.12.9)

and bounded with respect to ‖·‖p ,

sup
ω

∥∥g ·(ω)
∥∥

p <∞,

then the convolution

KT ∗ ge (ω) =
∫ π

−π
KT (α)ge (ω−α)dα

converges in ‖·‖p to ge (ω), uniformly in ω:

sup
ω

∥∥KT ∗ g ·(ω)− g ·(ω)
∥∥

p → 0 as T →∞.

Notice that if p =∞, (3.12.9) is the same as uniform equicontinuity of the
family of functions {ge }e∈E .
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Proof. We follow the same strategy as in Edwards (1967, Theorem 3.2.2).
We use the shorthand notation

∫ = ∫ π
−π. Setting

aT =
∫

KT (α)dα,

we obtain via Jensen’s inequality

sup
ω

∥∥KT ∗ g ·(ω)−aT g ·(ω)
∥∥

p ≤
∫

|KT (α)| · sup
ω

∥∥g ·(ω−α)− g ·(ω)
∥∥

p dα= I .

Fix ε > 0. We can choose δ > 0 satisfying (3.12.9). The rest of the proof
parallels that of Edwards (1967); the idea is the following: we separate the
integral I into ∫

0≤|α|≤δ
+

∫
δ≤|α|≤π

.

The first integral will be small because of the continuity condition and
the boundedness of the L1-norm of KT , and the second integral is small
of the property (i i i ) of an approximate identity, and because the g ·’s are
bounded. The proof is then completed by noting that aT → 2π.

Remark 3.12.22. Notice that, in the previous Lemma, the rate of conver-
gence depends only on

1. the properties of the approximate identity,

2. the bound supω
∥∥g ·(ω)

∥∥
p ,

3. the continuity parameter δ= δ(ε).



CHAPTER 4
Dynamics of DNA Minicircles

In this chapter, we study the dynamics of closed DNA strands, and propose
a methodology for comparing the dynamics by comparing their spectral
density operators, using some of the theory developed in Chapters 2 and
3. Since this chapter contains the applied contribution of this thesis, I
have tried to write it in a self-contained manner, to facilitate independent
reading.

4.1 Molecular Biophysics and Dynamics of DNA Mini-

circles

“What is life?” is an old and fundamental question. In trying to answer
this question, Schrödinger (1944) developed some of the seminal ideas of
molecular biophysics, which is the field that studies the physics of biopoly-
mers, such as DNA strands and proteins (Noble 2010). Within this field,
understanding the physics of DNA is of particular importance, because
the mechanical properties of DNA are closely related to its biological
functions, such as DNA packaging, replication, and transcription.
An ongoing theme of research in molecular biophysics is to understand
how the mechanics of a strand of DNA—which are well described by
models at the atomic level—behave at the larger scale of tens, hundreds
(Walter, Gonzalez & Maddocks 2010, Gonzalez, Petkevičiūtė & Maddocks
2013) or even thousands of base-pairs (Sambriski et al. n.d.). A way of
understanding the mechanics of such strands of DNA is through cycliza-
tion experiments. These experiments provide insight into the bending
properties of DNA by estimating the J-factor (Amzallag et al. 2006) of a
DNA strand, which is the probability that the two ends of the strand are in
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a configuration where they could bind to form a loop. The resulting loop
is called a DNA minicircle (Kahn & Crothers 1992, Shore et al. 1981, Shore
& Baldwin 1983).

Recently, technological improvements have allowed static
three-dimensional reconstruction of such minicircles, thus allowing the
comparison of DNA minicircles with different J-factors. A specific exam-
ple is that of the CAP minicircle and the TATA minicircle (see Section 4.2),
whose J-factors are significantly different (Amzallag et al. 2006). Based on
three-dimensional reconstructions of a sample of CAP & TATA minicircles,
obtained by cryo-electron microscopy, it appeared that the differences be-
tween the two minicircles are not in their mean shape, but in the way they
vary around their mean shape, i.e., in their covariance structure (Amzallag,
Vaillant, Jacob, Unser, Bednar, Kahn, Dubochet, Stasiak & Maddocks 2006,
Panaretos, Kraus & Maddocks 2010). These studies allowed however only
insight into the static mechanics of DNA strands, and do not give informa-
tion about the dynamical properties—or dynamics—of DNA, since they
are based on static images of the DNA minicircles.

The ideal kind of data needed for understanding the dynamics of DNA
would be in the form of a movie of DNA minicircles oscillating in solution.
Unfortunately, empirical acquisition of such data is not yet feasible, but in
silico surrogates can be created via Molecular Dynamics (MD) simulations
(Leach 2001, Dryden et al. 2002, Gonzalez & Maddocks 2001, Lankas et al.
2009). MD simulations are used to obtain the trajectory of a DNA minicir-
cle moving in solution, and are obtained by numerically solving a model
based on the pairwise interactions between all the atoms of DNA and the
water solution in which it is immersed. As such, it is not the trajectories of
each individual DNA atom that are of interest, but their joint behaviour in
the scaling-limit, where the mechanics of a DNA strand is similar to that
of an elastic rod. It is therefore natural to adopt a functional data analysis
(FDA, see Ramsay & Silverman 2005) viewpoint for the analysis of DNA
minicircle trajectories.

The data we will be working with in this chapter are trajectories of CAP
& TATA minicircles oscillating in solution, obtained by MD simulations.
Given the scientific interest of understanding their large-scale dynamics,
we will model them as functional time series (FTS). An FTS is a sequence
{X t : t = . . . ,−1,0,1, . . .}, where t denotes the time index, and each X t is
a random function, say X t ∈ L2

(
[0,1],R3

)
, representing for instance the

shape of a minicircle at time t . The dynamics of the minicircles can be
viewed through the lens of the
second-order structure of the time series, which is contained in the lag-t
autocovariance operators of the time series: these encode the covariation
of the random function t time points apart. Understanding and compar-
ing the dynamics of CAP and TATA minicircles can therefore be translated
into the problem of estimation and inference for the second-order struc-
ture of functional time series.

Inference for functional time series is usually carried out under functional
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autoregressive models, or more general linear models, see e.g. Mas (2002),
Bosq (2000), Ferraty & Romain (2011); relaxing the linearity assumptions
is the object of more recent work, see e.g. Hörmann & Kokoszka (2010).
The problem of inference for functional time series without linear assump-
tions is starting to be addressed: Horváth, Kokoszka & Reeder (2013) treat
the two-sample problem of testing the equality of the mean function of
two functional time series. Concerning inference on the second-order
structure, Horváth, Kokoszka & Reeder (2013) propose a consistent esti-
mator for the long-run covariance operator. We proposed in Chapter 3
(see also Panaretos & Tavakoli 2013b) to estimate the entire second-order
structure via a frequency domain approach, and showed in particular
the asymptotic normality of our estimators, under cumulant mixing con-
ditions. However, it seems that the problem of comparing the entire
second-order structure of stationary functional time series has so far not
been treated.

The contribution of this chapter comprises the development of a method-
ology for the comparison of the entire dynamics (encoded by all the lag-t
autocovariance operators) of two stationary functional time series, by
using a frequency domain approach. In particular, it gives a way of local-
izing the differences either only at the level of frequencies, or to select
significant frequencies, and compare the dynamics of the curves within
each frequency, while controlling the overall significance of the detected
differences.

The chapter is organized as follows. In Section 4.2, we present the CAP and
TATA minicircle data, the preprocessing steps, and the estimation of their
dynamics through their spectral density operators. In Section 4.3, we treat
the problem of detecting differences between the spectral density opera-
tors of CAP and TATA, by first comparing them at fixed
frequencies—using a test for comparing their spectral density operators
that we introduce in this chapter—and then adjusting for multiplicities to
localize the differences in the frequencies, while controlling the overall
significance of the detections. We also conduct a simulation study to as-
sess the performance of our method for small sample sizes. The detection
of the differences between the CAP and TATA is further investigated in
Section 4.4, where we consider the problem of first selecting frequencies
at which the spectral density operators of CAP and TATA are different, and
then detecting and localizing their differences on the minicircles, within
each selected frequency. We conclude this chapter by a brief outlook and
some potential extensions (Section 4.5).

4.2 Description of the Data

The dataset of our case study is comprised of (time) trajectories of two
DNA minicircles obtained via molecular dynamics (MD) simulations
(Leach 2001, Chapter 7). Such simulations give the simulated trajectory of
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a strand of DNA moving in water, and are obtained by numerical integra-
tion of a model taking into account all the pairwise interactions between
atoms. The MD simulations were conducted by members of the Labora-
tory for Computation and Visualization in Mathematics and Mechanics at
EPFL (http://lcvmwww.epfl.ch/), and kindly shared with us.

The two DNA minicircles are called CAP and TATA: they each consist of
158 base-pairs, and differ only at 18 base-pairs (see Table 4.1).

CAP

GATGAATTCACGGATCCGGTTTTTTGCCCGTTTTTTGCCGTTTTTTGCCCGTTTTTTGCCGTTTTTT
GCCCGTTTTTTCCGGATCCGTACAGGAATTCTAGACCTAGGGTGCCTAATGAGTGAGCTAACTCACA
TTAATTGCGTTGCGCCATGGAATC

TATA

GATGAATTCACGGATCCGGTTTTTTGCCCGTTTTTTGCCGTTTTTTGCCCGTTTTTTGCCGTTTTTT
GCCCGTTTTTTCCGGATCCGTACAGGAATTCTAGACCTAGGGTGCCTAATGAGTGCCCTTTTATAGC
TTAAACGCGTTGCGCCATGGAATC

Table 4.1 – The sequences of base-pairs for the CAP and TATA minicircles; the
differences between the two sequences are in gray.

The MD simulation used an integration step of 2 femtoseconds (2 ·10−15

seconds) for the numerical integration algorithm, and the data were
recorded every picosecond (10−12 seconds). Time-wise, the data consist
of 50000 snapshots, where the data at each snapshot have been simplified
to the three-dimensional coordinates of the 158 base-pairs centers of the
minicircle.

For each minicircle, the data at hand are therefore

{Mt ( j ) | t = 1,2, . . . ,50000; j = 1, . . . ,158} ⊂R3,

where t denotes the time index (in picoseconds), and j is the base-pair
index. In other words, Mt ( j ) ∈R3 is the coordinates of base-pair j at time
t . In the following, we shall view the set {1, . . . ,158} as the quotient group
Z/158Z, so that Mt ( j +k) has a meaning for all j ,k ∈Z.

The data are shown for various timepoints t in Figure 4.1 on the next
page. Since the data can be rotated or translated without changing the
information they convey, our analysis should hinge on features that are
invariant to translations and rotations. We therefore choose to work with
the curvature of the DNA minicircles, since curvature does not depend
on the location or the orientation of the data. Further to solving the
problem of data registration, the use of the curvature also reduces the
dimensionality of the data, changing it from a time series of R3- valued
curves to a time series of real-valued curves.

http://lcvmwww.epfl.ch/


Figure 4.1 – The DNA minicircles for various timepoints t (CAP in black, TATA in gray). The top plot of the
four subfigures contains the projection of the DNA minicircles onto the X Y plane, and the plot below shows
their projection onto the Z -axis. The units of the X ,Y , Z axes are in ångström (1 ångström = 10−10 meters).
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4.2.1 Data Preprocessing

The problem of estimating the curvature of a curve based on discrete
noisy observations has already been studied (e.g. Lee et al. 1993, Sangalli
et al. 2009). Sangalli et al. (2009) use free-knot regression splines to esti-
mate the curve. Once the curve is estimated, its curvature is computed by
a plug-in method, i.e., the curvature estimate is

c(t ) = |γ′(t )∧γ′′(t )|/|γ′(t )|3, (4.2.1)

whereγ(t ) ∈R3 is the estimated curve, and u∧v denotes the cross-product
of two vectors u, v ∈R3. These techniques use a smoothness parameter
C that plays a crucial role in the estimation, and whose choice is rather
subjective (Sangalli et al. 2009, Section 4). Furthermore, our personal ex-
perience with plug-in estimation of the curvature is that it yields estimates
with too many degrees of freedom, mainly because of the renormalization
factor in (4.2.1). The problem persists even with roughness penalization
of the estimated curve. We therefore choose to use another method for es-
timating the curvature of our minicircles, that also fits better our interest
of understanding the larger scale behaviour of DNA minicircles. For each
minicircle trajectory, we compute the curvature trajectory

{ct ( j ) : t = 1,2, . . . ,50000; j = 1, . . . ,158} ⊂R+,by R+ we mean the set

of positive real

numbers where ct ( j ) is the curvature (inverse radius) of the circle passing through
the three points Mt ( j −5), Mt ( j ), Mt ( j +5). We recall that the curvature of
three points p1, p2, p3 ∈R3 is given by

curvature(p1, p2, p3) = 2
∥∥(p2 −p1)∧ (p3 −p2)

∥∥/(
∥∥p2 −p1

∥∥ ·∥∥p3 −p2
∥∥ ·∥∥p3 −p1

∥∥).

The reason why the curvature is taken between the base-pairs
{

j −5, j , j +5
}

instead of
{

j −1, j , j +1
}
, is that since the DNA double helix performs on

average a complete rotation in about 11 or 12 base-pairs; taking the cur-
vature of the directly adjacent base-pairs would represent a very local
curvature of the minicircles, whereas the curvature computed on base-
pairs

{
j −5, j , j +5

}
corresponds to a coarser version of the curvature,

which fits our interest of understanding the larger scale behaviour of the
minicircles. Furthermore, computing curvatures in this way yields more
stable estimates (which are less sensitive to small perturbations of the
base-pair center). From a statistical point of view, this procedure esti-
mates a biased (smoothed) version of the curvature, which discards very
local bends of the DNA, but keeps its larger scale bends.

Since the curvature is constrained to be positive, the curvature data c j (t )
do not lie in a linear space. Nevertheless, most methodology for functional
data—including ours—assumes implicitly that the data take values in
a linear space (e.g. functional principal component analysis consists
of finite dimensional linear approximations of the data). We therefore
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Figure 4.2 – The ef-
fect of the constant
δ= 10−3, see (4.2.2), in
the linearization of the
curvature. The dashed
curve is log(ct (·)), and
the gray solid curve is
dt (·) = log(δ+ ct (·)).
Notice that the dt
smooths the down-
ward peaks that are
very deep, while
changing the other
points only a little.

convert the curvature data into elements of a linear space by using the
transformation x 7→ log(δ+x), where δ> 0 is a fixed constant (see below),
and define the linearized curvature by

dt ( j ) = log(δ+ ct ( j )), for all t , j . (4.2.2)

The purpose of the constant δ is to prevent d j (t) from taking too large
(negative) values if c j (t) is close to zero, which would ruin any further
analysis. If δ is too small, the functions d j (·) will have very large spikes,
and if δ is too large, d j (·) will be essentially constant. We choose δ= 10−3,
based on exploratory analysis, which gave a good compromise between
the two situations. Figure 4.2 illustrates the role of δ. Since the linearized
curvatures are discretely sampled versions of smooth curves, we trans-
form each function j 7→ dt ( j ) into a smooth curve τ 7→ Yt (τ),τ ∈ [0,1], by
smoothing the scatter plot(

j −1

158
,dt ( j )

)
, j = 1, . . . ,158, (4.2.3)

for each fixed t , using a basis expansion (Ramsay & Silverman 2005) with
80 periodic cubic B-splines (King et al. 2010). We used periodic B-splines
instead of the usual B-splines because we expect the smooth curve to
be periodic on [0,1], since it represents the curvature of a closed strand
of DNA. The choice of the number of basis elements represents a bias-
variance trade-off, and is usually either based on prior knowledge of
the smoothness of the functional data, or some kind of cross-validation
method. Our choice of 80 basis functions came from the combination
of considerations on the postulated degrees of freedom of the curvature
(which should be less than the number of base-pairs), computational
considerations, and graphical goodness of fit assessment. We also con-
ducted the analysis presented in the rest of the chapter with 40 and 60
basis functions, and the results were similar to those obtained with 80
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Figure 4.3 – Illustra-
tion of the smoothing

process. The dashed
curve with the solid
grey dots represents

the scatter plot (4.2.3),
and the solid black

curve represents its
smoothed version ob-
tained by projecting it
onto a basis of 80 peri-

odic cubic B-splines.
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basis functions. We note that exploratory plots revealed no need to use
penalization for smoothing the functions dt . Figure 4.3 illustrates the
smoothing process.
Exploratory analysis of the functional time series {Yt : t = 1, . . . ,50000}
revealed that the series exhibited a strong temporal dependence, to-
gether with a non-stationary behaviour. Taking the time differences
X t = Yt+1 −Yt circumvents this problem. We therefore chose to work
with the series {X t : t = 1, . . . ,49999} for the rest of the analysis. To put
things in perspective, the model we are implicitly assuming is

Yt+1(τ) = Yt (τ)+X t (τ), τ ∈ [0,1],

where we recall that Yt is the linearized curvature of the DNA minicircle.
The stationary series X t is therefore the process that governs the change
in linearized curvature of the DNA minicircle. Applying all these steps to
the CAP minicircles, and respectively to the TATA minicircles, we get two
functional time series, X 1

t , respectively X 2
t . Figure 4.4 on the next page

contains plots of X a
t (a = 1,2) for different values of t .

4.2.2 Estimation of the Dynamics

The (second-order) dynamics of a stationary FTS {X t : t ∈Z} are contained
in the lag-t autocovariance operators

Rt = E
[
(X t −µ)⊗2(X0 −µ)

]
, t ∈Z, (4.2.4)

where µ= EX t . Estimation of the dynamics could therefore be reduced
to the estimation of the autocovariance operators, but we choose to take
a different approach, and estimate the dynamics through a frequency
domain approach (see Chapters 2 and 3, as well as Panaretos & Tavakoli
(2013b)). Recall that in the frequency domain approach, the objects of
interest are not the lag-t autocovariance operators, but their Fourier trans-
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Figure 4.4 – Plot of the innovation process X t of the linearized curvatures for CAP (dashed black curve) and
TATA (solid gray curve) for various timepoints t .
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forms,
Fω = (2π)−1

∑
t∈Z

exp(−iωt )Rt , ω ∈ [−π,π], (4.2.5)

where i ∈ C is the imaginary number, i2 = −1. Each Fω,ω ∈ [−π,π], is
called the spectral density operator at ω, and is well defined under a
summability conditions on the autocovariance operators (see Proposi-
tion 3.2.4). At each frequency ω, the spectral density operator Fω is an
operator on L2 ([0,1],C), associated with a spectral density kernel fω, a
complex valued surface [0,1]2 3 (τ,σ) 7→ fω(τ,σ) ∈C. The spectral density

operator has various properties, but we just mention that f−ω = fω, and we
therefore restrict our interest to ω ∈ [0,π]. The elements of the collection
{Fω :ω ∈ [0,π]} are called the spectral density operators. Intuitively, the
spectral density operators generalize of the spectral density matrices of
multivariate time series (Brillinger 2001, Priestley 2001) to the functional
setting, and yield a decomposition of the variance of the FTS, given by the
inversion formula

Rt =
∫ π

−π
exp(iαt )Fαdα, t ∈Z.

The reason we decide to estimate the dynamics of our FTS via a frequency
domain approach is because the spectral density operators are closely
related to optimal linear finite dimensional representations of an FTS, via
harmonic principal component analysis (see Section 2.8).

Estimation of the spectral density operators is done by computing the
discrete Fourier transforms of the FTS, taking their empirical covariance
(called the periodogram operator), and smoothing it with a kernel of
bandwidth BT (see Panaretos & Tavakoli (2013b) for details). The first
step can be done using the Fast Fourier Transform, whose calculation
is most efficient when the length of the series is highly composite. We
therefore use only the stretch of data for t = 1, . . . ,49152 for all further
computations.

The bandwidth parameter BT needs to satisfy the conditions BT → 0
and T BT →∞ as T →∞, for the asymptotic results to hold. The choice
of BT governs also the bias/variance trade-off for the estimation of the
spectral density operators, similarly to nonparametric regression. For
inference (relying on Theorem 4.3.1 and Panaretos & Tavakoli (2013b,
Theorem 3.7)), it is crucial in finite samples to notice that the central
limit theorem effect occurs because the spectral density estimator at
a given frequency is obtained by weighted averaging of m = T BT /2π
approximately independent summands. The order of m plays therefore a
role similar to the number of i.i.d. summands when applying the classical
central limit theorem, and should be taken into account before making
any inferential statements based on asymptotics. In our case, we use
leave-one-out cross-validation of the trace of the periodogram operator
as a guide to bandwidth choice (Lee 1997). This suggests taking BT = 0.077
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Figure 4.5 – Plot of the
trace of the estimated
spectral density oper-
ators. Notice that the
sample spectral den-
sity operators of CAP
have consistently a
larger magnitude than
the sample spectral
density operators of
TATA.

(m = 600), a choice that is compatible with the results of our simulation
studies, in which we set BT = T −1/5 (following the heuristic that BT ∼
O(T −1/5) asymptotically, to minimize the mean-square error (Brillinger
2001, p.251)). We denote by F a,(T )

ω the estimated spectral density operator,
also called the sample spectral density operator, of X a

t , for a = 1,2.

Graphical representation of the sample spectral density operators is not
straightforward: for each frequency ω ∈ [0,π], the sample spectral density
operator is an operator on L2 ([0,1],C): its trace norm is shown Figure 4.5
for CAP and TATA. The modulus of the sample spectral density kernels
f a,(T )
ω , a = 1,2, associated to the sample spectral density operators, are

represented in Figure 4.6.

We notice that most of the trace energy is concentrated towards the higher
end of the frequencies (near ω = π), with low energy near ω = 0. This
means that the series X t consists mainly of high frequency functional
oscillations, and that the low frequency oscillations contained in the
linearized curvature series Yt mostly cancel out when taking its time
differences to form X t . Figure 4.6 shows that most of the energy of the
spectral density operators is near the diagonal of the sample spectral
density kernels, and then falls off sharply as one moves away from the
diagonal. The interpretation of this is that the series X t has strong local
interactions, in the sense that X t (τ) and X0(σ) are interacting strongly
for |τ−σ| small, say |τ−σ| < ε, and almost not interacting for |τ−σ| > ε.
This reflects the fact that the series X t is locally smooth, but globally quite
rough, as can be seen in Figure 4.4 on page 161 .

4.2.3 Comparing the Spectral Density Operators?

Even though the traces of the sample spectral density operators of CAP
and TATA are different, and small differences between their sample spec-
tral density kernels are visible, it is not a priori clear if these differences are
due purely to randomness, or if the spectral density operators of the two
DNA minicircles are different. The next section answers this question, by



Figure 4.6 – Plot of the sample spectral density kernels for 12 equispaced frequencies on [0,π]. For eachω, the
modulus of the sample spectral density kernel of the minicircles is plotted: the upper-left part of each square
represents the modulus of the sample spectral density kernel of CAP, and the lower-right part represents
the corresponding quantity for TATA. Lack of symmetry between the upper-left and lower-right is a sign of
differences in the sample spectral density operators of CAP and TATA.
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comparing the two spectral density operators on a dense grid of frequen-
cies, and localizing frequencies at which the spectral density operator are
significantly different, while adjusting for multiplicities.

4.3 Comparing the Spectral Density Operators,

Localizing the Differences in Frequencies

Comparing the second order dynamics of the functional time series X 1
t

and X 2
t can now be reduced to testing the equality of their spectral density

operators. More precisely, we wish to test⋂
ω∈[0,π]

Hω against “Hω is wrong for some ω ∈ [0,π]",

where Hω :“ F 1
ω = F 2

ω ”, for ω ∈ [0,π], and detect the frequencies ω for
which the null hypothesis Hω is wrong, while controlling an overall error
criterion. We will take a multiple testing approach to this problem, first by
testing each Hω marginally, and then performing multiplicity corrections.

4.3.1 Comparing the Spectral Density Operators
at a Fixed Frequency

In order to test Hω for a fixed ω ∈ [0,π], we created a test inspired by
Panaretos et al. (2010). The key idea is to project the difference be-
tween the two sample spectral density operators, F 1,(T )

ω −F 2,(T )
ω , onto

the (random) subspaces generated by the tensor products of the first
K estimated eigenfunctions of F 1

ω, under Hω. Let (µ̃i (ω),ϕ̃ωi )∞i=1 be the
eigenvalue and eigenfunction pairs of the pooled spectral density opera-
tors (F 1,(T )

ω +F 2,(T )
ω )/2. We propose the following test statistic,

∆̃(T )
K (ω) =

K∑
i , j=1

∣∣∣〈D (T )
ω ϕ̃ωj ,ϕ̃ωi

〉∣∣∣2

(
1+1{0,π}(ω)

)
4πκ2µ̃i (ω)µ̃ωj

, (4.3.1)

whereκ2 = ∫
RW (x)2d x, and D (T )

ω =p
T BT

(
F 1,(T )
ω −F 2,(T )

ω

)
is the rescaled

difference between the sample spectral density operators of CAP and TATA.
The indicator in the denominator is a correction term for the frequencies
ω ∈ {0,π}, at which the sample spectral density operator has an increased
variance. The test measures the rescaled differences between the two
sample spectral density operators at frequency ω that is contained in the
space spanned by the first K sample eigenfunctions of the pooled spectral
density operators. In a multivariate setting, one would want take the trun-
cation level K equal to the dimension of the vector series; this is however
not possible here, because it leads to an inverse problem since µ̃ωi → 0
as i →∞. The parameter K can be therefore viewed as a regularization
parameter. Its choice is discussed in Section 4.3.2.
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The following Theorem gives the asymptotic distribution of our test statis-
tic, and is the main theoretical result of this chapter.

Theorem 4.3.1.
Let K1, . . . ,K J be fixed non-negative integers, and let ω1, . . . ,ωJ ∈ [0,π] be a
fixed number of distinct frequencies. Assume that the conditions of The-
orem 3.6.5 hold, and that BT → 0 & T BT →∞ as T →∞. Furthermore,
assume that for each ω j , the first K j eigenvalues of the spectral density
operator Fω j are all distinct, and strictly positive. Then, under the null

hypothesis H0 =∩J
j=1Hω j , the test statistics ∆̃(T )

K j
(ω j ), j = 1, . . . , J , converge

in distribution to independent random variables ∆K j (ω j ), where

∆K j (ω j ) ∼
χ2

K (K+1)/2, ω j ∈ {0,π},

χ2
K 2 , otherwise.

(4.3.2)

Proof. The proof is in two parts. First we will show the result for a mod-
ified version of the test, where we assume that the eigenfunctions and
eigenvalues of the spectral density operators are known. Then we will
show that the sample versions of the eigenfunctions and eigenvalues are
consistent, and we will conclude the proof using Slutsky’s theorem for
metric spaces.
We recall that under Hω, F 1

ω =F 2
ω =Fω, whose singular value decompo-

sition is given by
Fω = ∑

j≥1
µ j (ω)ϕωj ⊗2ϕ

ω
j .

We also denote by
F (T )
ω = (F 1,(T )

ω +F 2,(T )
ω )/2

the pooled sample spectral density operator, with singular value decom-
position

F (T )
ω = ∑

j≥1
µ̃ j (ω)ϕ̃ωj ⊗2 ϕ̃

ω
j .

Let us also writeϕωi j =ϕωi ⊗2ϕ
ω
j , and similarly for ϕ̃ωi j . In the following, we

shall omit the superscripts “·ω” and some of the “(ω)” in order to alleviate
notation; this will not interfere with the validity of the proof, since ω will
be fixed.
Fix ω ∈ [0,π], and let us define

∆̌(T )
K (ω) =

K∑
i , j=1

∣∣∣〈D (T )
ω ϕ j ,ϕi

〉∣∣∣2

(
1+1{0,π}(ω)

)
4πκ2µiµ j

, (4.3.3)

where D (T )
ω = p

T BT

(
F 1,(T )
ω −F 2,(T )

ω

)
. ∆̌(T )

K (ω) is similar to ∆̂(T )
K (ω) with

the eigenstructure of the pooled sample spectral density operator replaced
by its true (and unknown) counterpart. By Theorem 3.6.5, we know that
D (T )
ω converges in distribution to a random element F̆ω, whose Karhunen–
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Loève expansion is given by F̆ω = ∑∞
i , j=1ηi jϕi j , see Remarks 3.7.6 and

3.7.9. In particular, {ηi j : 1 ≤ i ≤ j } are independent Gaussian random
variables with mean zero. Hence, by the continuous mapping theorem,

∆̌(T )
K (ω)

d−→
K∑

i , j=1

|ηi j |2(
1+1{0,π}(ω)

)
4πκ2µiµ j

=:∆K (ω) (4.3.4)

We now need to distinguish two cases: if ω ∈ {0,π} , then η j i = ηi j for i < j ,{
ηi j : j ≥ i ≥ 1

}
are real independent Gaussian random variables with mean zero,

var
(
ηi i

)= 8πκ2µ2
i ,

and
var

(
ηi j

)= 4πκ2µiµ j , i < j .

A direct calculation yields thus ∆K (ω) ∼χ2
K (K+1)/2, since

(|ηi j |2 +|η j i |2
)

/(8πκ2µiµ j ) = |ηi j |2/(4πκ2µiµ j ) ∼χ2
1, i < j ,

and
|ηi i |2/(8πκ2µ2

i ) ∼χ2
1.

If ω 6∈ {0,π} , the random variables ηi j are real Gaussian variables for i = j ,
with and circular complex Gaussian for i < j (see Remark 3.7.6), with
η j i = ηi j for i < j and

var
(
ηi j

)= 4πκ2µiµ j , ∀i ≤ j .

Hence, ∆K (ω) ∼χ2
K 2 , since

|ηi i |2/(4πκ2µ2
i ) ∼χ2

1,

and (|ηi j |2 +|η j i |2
)

/(4πκ2µiµ j ) = 2|ηi j |2/(4πκ2µiµ j ) ∼χ2
2,

for i < j .

Let us now turn to the second part of the proof. Fix ω ∈ [0,π]. From Propo-
sition 3.7.2, we know that for all i = 1,2, . . . ,K , µ̃i converges in L2 toµi , and
µ̃i is therefore a consistent estimator of µi . We now turn to the eigenfunc-
tions ϕi . We point out that these eigenfunctions are not uniquely defined,
however the eigenprojectors Πi =ϕi ⊗2ϕi are well defined. Using results
from Section A.3.4, we get

|〈D (T )
ω ϕ̃ j ,ϕ̃i 〉|2 = 〈D (T )

ω

⊗
2 D (T )

ω ,Π̃i
⊗̃

2 Π̃ j 〉S2 ,
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Since Π̃i is a consistent estimator of Πi , i = 1, . . . ,K (Proposition 3.7.2),
and the Kronecker and tensor products are continuous, the continuous
mapping Theorem implies that

Π̃i
⊗̃

2 Π̃ j
p−→Πi

⊗̃
2 Π j ,

and
D (T )
ω

⊗
2 D (T )

ω
d−→ F̆ω

⊗
2 F̆ω.

Therefore, by Slutsky’s Theorem,

∆̃(T )
K

d−→
K∑

i , j=1

〈
F̆ω

⊗
2 F̆ω,Πi

⊗
2Π j

〉
S2(

1+1{0,π}(ω)
)

4πκ2µiµ j

=
K∑

i , j=1

∣∣∣∣〈F̆ω,ϕi j

〉
S2

∣∣∣∣2

(
1+1{0,π}(ω)

)
4πκ2µiµ j

=
K∑

i , j=1

∣∣ηi j
∣∣2(

1+1{0,π}(ω)
)

4πκ2µiµ j

=∆K (ω).

〈·, ·〉S2 denotes the

Hilbert-Schmidt inner

product, see

Section A.2.2.2 on

page 220

To finish the proof, notice that the independence of the ∆K j (ω j )s follows

directly from the independence of the F̆ω j s.

The application of this test requires the choice, for each ω ∈ Γ, of a param-
eter K , which is now discussed.

4.3.2 Automatic Choice of the Truncation Level

The choice of the truncation level K is a difficult problem. If it is chosen
too small, then the test will respect the level, but will not be powerful. With
a K too large, the test will not respect the level due to the ill-posedness of
the problem.

Ideally, the choice of truncation level K should depend on the frequency
ω j , i.e., K = K (ω j ). One way of choosing K (ω) is to find the K ≥ 1 that
minimizes the following pseudo-AIC criterion

AIC(K ,ω) = GOF(K ,ω)+PEN1(K ,ω)+PEN2(K ,ω) (4.3.5)

where GOF(K ,ω) is a goodness of fit criterion, and PENa(K ,ω), a = 1,2,
are penalizations for overfitting the spectral densities F a,(T )

ω , a = 1,2. We
propose taking

GOF(K ,ω) =
Nb∑

k=K+1

〈(
F 1,(T )
ω −F 2,(T )

ω

)
ϕ̃ωk ,ϕ̃ωk

〉
(4.3.6)
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and

PENa(K ,ω) =
(

Nb∑
j=1

µ̃ j (ω)

)
Nb∑
j=1

〈
F a,(T )
ω (K ) ϕ̂a,ω

j ,ϕ̂a,ω
j

〉
n(ω,m)µ̂a

j (ω)
, a = 1,2, (4.3.7)

where (µ̂a
j (ω),ϕ̂a,ω

j ) denotes the j -th eigenvalue/eigenvector pair of F a,(T )
ω ,

a = 1,2; j = 1,2, . . ., (µ̃ j (ω),ϕ̃ωj ) denotes the j -th eigenvalue/eigenvector

pair of the pooled sample spectral density operator F (T )
ω =

(
F (T )
ω +F (T )

ω

)
/2,

and

F a,(T )
ω (K ) =

K∑
k1,k2=1

〈
F a,(T )
ω ϕ̃ωk1

,ϕ̃ωk2

〉
ϕ̃ωk1

⊗2 ϕ̃
ω
k2

, a = 1,2,

is the projection of the sample spectral density operator onto the first
K eigenspaces of the pooled sample spectral density operator (F 1,(T )

ω +
F 2,(T )
ω )/2. The constant n(ω,m) depends only onω and m = T BT /2π, see

(4.3.8) below. The intuition behind this criterion is that it corresponds to
the AIC criterion of Panaretos et al. (2010, Section 3.3) if we had observed
n(ω) i.i.d. complex curves from a random function with covariance F a

ω ,
for a = 1,2. Even though these curves are not observed in our context,
the choice of n(ω) should reflect the number of independent pieces of
information used to construct our estimate F a,(T )

ω . Following Brillinger
(2001, p.252), we set

n(ω,m) = m/κ2. (4.3.8)

We also propose a variant of this criterion, by using the following penal-
izations instead of (4.3.7),

PEN∗
a(K ,ω) =

(
Nb∑
j=1

µ̃ j (ω)

)
Nb∑
j=1

〈
F a,(T )
ω (K ) ϕ̂a,ω

j ,ϕ̂a,ω
j

〉
n(ω,m)

√
µ̂a

j (ω)γ̂a
j (ω)

, a = 1,2, (4.3.9)

where γ̂a
1 (ω) = µ̂a

1 (ω)− µ̂a
2 (ω) and

γ̂a
l (ω) = min

{
µ̂a

l−1(ω)− µ̂a
l (ω), µ̂a

l (ω)− µ̂a
l+1(ω)

}
, l = 2, . . . ,

and a = 1,2. The corresponding pseudo-AIC criterion is

AIC∗(K ,ω) = GOF(K ,ω)+PEN∗
1 (K ,ω)+PEN∗

2 (K ,ω). (4.3.10)

The difference between AIC and AIC∗ is that the second criterion takes
into account the difficulty of estimating the eigenstructure of the pooled
spectral density operator, in addition to penalizing for the roughness of
the pooled spectral density operator with respect to F 1,(T )

ω and F a,(T )
ω

(see Bosq (2000, Lemma 4.3)). We also note that both criteria are invariant
to scaling of the sample spectral density operator.
Numerical simulation (see Section 4.3.5) suggest that in order to maximize
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Figure 4.7 – Trunca-
tion levels K (ω) as

chosen by the AIC∗
criterion (4.3.10). The
small ticks on the hor-
izontal axis represent

the grid of frequen-
cies Γ for which the

test is computed.
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power, K (ω) should be selected with AIC in settings where the eigenvalues
of the spectral density operators decay quickly, and that AIC∗ should be
used in more rough settings, where the eigenvalues of the spectral density
operators decay slowly. Since our DNA minicircle data corresponds to the
second case, we shall use AIC∗ in the rest of the chapter.

4.3.3 Localization of Differences on the Frequencies,
Multiplicity Adjustments

Recall that Hω denotes the null hypothesis F 1
ω =F 2

ω. In order to test the
global null hypothesis

HG := ⋂
ω∈[0,π]

Hω,

we will first obtain marginal p-values for each of the null hypotheses Hω,
ω ∈ Γ, where

Γ := {
ω1, . . . ,ωJ

}⊂ [0,π]

is a grid of frequencies, and then adjust the p-values to account for multi-
plicity effects. The p-values will be based on the asymptotic distribution
of the test statistic ∆̃(T )

K (ω), given by Theorem 4.3.1.

The results of applying the automatic truncation level rule (4.3.10) to
our DNA minicircle dataset are shown in Figure 4.7. We notice that the
selected values of K (ω) vary between 34 and 42. The corresponding (ap-
proximate) p-values are

p j =P
(
χ2
ν(ω j ) > ∆̃(T )

K (ω j )(ω j )
)

, j = 1, . . . , J ,

where ν(ω j ) = K (ω j )[K (ω j )−1]/2 if ω j ∈ {0,π}, and ν(ω j ) = K (ω j )2 oth-
erwise. The choice of the grid of frequencies at which the p-values are
computed should be guided by a priori knowledge of the nature of the
alternative hypothesis; see Section 4.3.4. In our case, we chose a grid of
187 frequencies, which is shown in Figure 4.7. Adjusting the p-values for
multiplicities can be done either to control the family-wise error rate
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Figure 4.8 – Adjusted
p-values (using Holm’s
procedure) for test-
ing the equality of the
spectral density opera-
tors of CAP and TATA,
with the truncation
level K (ω) automati-
cally chosen at each
frequency ω with the
pseudo-AIC criterion
(4.3.10).

(FWER; Dudoit et al. 2003), which is the probability of making at least
one false rejection, or to control the less stringent false discovery rate
(FDR; Benjamini & Hochberg 1995), which is the expected value of the
proportion of false rejections amongst all rejections. Control of the FWER
can be achieved via Holm’s procedure (Dudoit et al. 2003). For controlling
the FDR, since the p-values pi and p j are dependent for |ωi −ω j | < 0.15,
and approximately independent for |ωi −ω j | > 0.15, we are in the context
of dependence in finite blocks, and the original Benjamini-Hochberg (BH)
algorithm for controlling the FDR is appropriate (Storey et al. 2004). In
our case, since the difference between the two minicircles is quite strong,
we only show the adjustment using Holm’s procedure; see Figure 4.8.
We notice that the two spectral density operators are very significantly
different at all frequencies. More generally, our advice is to use the BH
procedure for FDR adjustment, which will have more power in smaller-
sample situations. We also conducted numerical simulations to assess the
performance and validity of our procedure in finite sample; these suggest
that both Holm’s and BH procedure are valid for small sample sizes (see
Section 4.3.5).
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4.3.4 Choice of the Discretization Grid Γ

The choice of the grid Γ (and therefore J) is related to the alternative
against which we wish to test the global null HG =∩ω∈[0,π]Hω:

Power for global differences between the two spectral density operators: If we believe that the
true differences between the two spectral density operators are going to be on a large subinter-
val of [0,π], J should be small, so that the power of the test is not lost because of multiple com-
parisons. If Γ⊂ [0,π] is chosen such that |ωi −ω j | ≥ 2BT , for all ωi 6=ω j ∈ Γ, then Hochberg’s
procedure may be applied for multiplicity corrections.

Power for narrow banded differences between the two spectral density operators: If we believe
that the true difference are in a very narrow band of the spectra, e.g. Hω is false only for |ω−
ω′| < δ, with ω′ ∈ [0,π] and δ> 0 small, then Γ should be chosen to be a dense grid over [0,π].
The largest gap between any two consecutive frequencies in Γ will indicate approximately
smallest band-size δ for which the test would be able to detect departures from the global null
HG .

Frequencies near {0,π}: Although we expect ∆̃(T )
K (ω j ) to follow, for large T , approximately a χ2

K 2

distribution for any ω j 6∈ {0,π}, the approximation might not hold for frequencies ω j very

close to {0,π}. This happens because the asymptotic distribution of ∆̃(T )
K (ω) is χ2

K (K+1)/2 for

ω ∈ {0,π}, but χ2
K 2 for ω ∈ (0,π), and because ∆̃(T )

K (ω) is continuous in ω. Therefore, for ω j

close to {0,π}, the approximate distribution of ∆̃(T )
K (ω j ) is approximately a mixture of χ2

K (K+1)/2

and χ2
K 2 random variables, with unknown mixture proportion.

Another justification for this phenomenon comes from the fact that the sample spectral
density operators, on which the test statistics ∆̃(T )

K (ω) are based, are constructed by smoothing

locally the periodogram operators P (T )
ω := X̃ (T )

ω ⊗2 X̃ (T )
−ω. Therefore, if ω j is close to 0 (say), the

periodogram operators, upon which the sample spectral density operators F (T )
0 and F (T )

ω j

will be based, will intersect and the tests ∆̃(T )
K (0) and ∆̃(T )

K (ω j ) will be correlated.

We therefore recommend that all the frequencies ω ∈ Γ, with ω 6∈ {0,π}, be at least at distance
2BT of the frequencies {0,π}.

4.3.5 Numerical Simulations

In order to assess the finite sample performances of our testing procedure,
we conducted some numerical simulations. The situation where the trun-
cation level K is chosen using either AIC of AIC∗ is of particular interest,
since our asymptotic framework requires having K fixed (deterministic)
and T →∞, whereas K chosen with AIC/AIC∗ is random. Our simula-
tion procedure is similar to those presented in Section 3.9: we simulate a
stationary functional times series admitting the linear representation

X [α]
t =

2∑
s=0

αs Asεt−s ,

where αs ∈R are scaling parameters (described below), As are bounded
operators, and the εt are i.i.d. random functions (the innovations), repre-
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sented using a truncated Karhunen–Loève expansion:

εt (τ) =
20∑

k=1
ξk,t

√
λk ek (τ),

and ek (τ) = p
2sin[(k − 1/2)πτ] is orthonormal system in L2([0,1],R) ,

see e.g. Adler (1990). The ξk,t are i.i.d. random variables, whose choice
governs the distribution of the random functions εt . The λk s are numbers
that describe the roughness of random curves εt . If λk → 0 very fast, then
the curves are smooth. Conversely, if λk decays slowly, the curves are
rough. We will consider the three following scenarios for ξk,t and λk :

Wiener: the ξk,t are independent standard Gaussian random vari-
ables, and

λk = 1/[(k −1/2)2π2].

The random curves εt therefore correspond to an approxi-
mation of the Wiener process, where the approximation is
due to the truncation of the Karhunen–Loève expansion
of εt .

White-noise: the ξ′k,t are independent standard Gaussian random vari-
ables, and λk = 1 for all k ≥ 1. This process corresponds
to a rougher version of the Wiener scenario, and is a pro-
jection of a true Gaussian white noise process.

Student5: The ξk,t are i.i.d. distributed random variables, following
Student’s t distribution with ν = 5 degrees of freedom,
and λk = 1 for all k ≥ 1. This process is similar to the
White-noise process, except it is not Gaussian, and only
its first 4 moments are finite.

We have constructed the operators As so that their image is contained
within a 20-dimensional subspace of L2 ([0,1],R), spanned by an orthonor-
mal basis ψ1, . . . ,ψ20. Representing εt in the (ek )20

k=1 basis, and As in the
(ψm ⊗2 ek )20

m,k=1 basis, we obtain a matrix representation of the process

X [α]
t as

X[α]
t =

2∑
s=0

αs Asεt−s ,

where X[α]
t is a 20×1 matrix, each As is a 20×20 matrix, and εt is a 20×1

matrix.

The matrices As are constructed by drawing, for each of their coordinates,
i.i.d. Gaussian variables with mean 1 and standard deviation 0.5. In prac-
tice, their construction is done by fixing the random seed to a pre-chosen
value and using the same generation scheme for each simulation run.
The parameters α = (α0,α1,α2) are used to make the spectral density
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operators of X [α]
t less constant. We chose

α=α(ma.diff) = (−1.4,2.3,−2+ma.diff) (4.3.11)

where ma.diff is a parameter that is allowed to change. The trace of
the spectral density operators for the Wiener scenario are shown is in
Figure 4.13 on page 185 for ma.diff= 0,0.1, . . . ,0.5. Visual appreciation of
the roughness of each process can be obtained by plots of the percentage
of explained variation at each frequency ω ∈ [0,π], that is, the proportion
of the total variation of the infinitesimal increment process d Zω contained
in its first k eigenspaces, i.e.∑k

j=1µ j (ω)∑20
j=1µ j (ω)

, k = 1,2, . . . ,20. (4.3.12)

The percentages of explained variation per frequency are shown in Fig-
ure 4.11 on page 184 for the Wiener scenario, and in Figure 4.12 on
page 184 for the White-noise and Student5 scenarios. Notice that k = 1
already explains at least 80% of the variation at each frequency for the
Wiener scenario, whereas we need to take k = 8 in the White-noise sce-
nario to explain 80% of the variation at frequencies near 0.9.

For each ma.diff ∈ {0,0.1, . . . ,0.5}, and each T ∈ {
26,27, . . . ,210

}
, we sim-

ulated for b = 1, . . . ,B stretches of length T of the time series X [α(0)]
t and

X [α(ma.diff)]
t . Denoting these observed times series by X b,1 and X b,2, we

computed their spectral density operators using the bandwidth BT =
T −1/5, (e.g. Grenander & Rosenblatt (1957, Par. 4.7), Brillinger (2001, Par.
7.4)) and took the weight function W (x) to be the Epanechnikov kernel
(e.g. Wand & Jones 1995), W (x) = 3

4 (1− x2) if |x| < 1, and zero otherwise.
We then compute and store the p-values

pb
j ,k =P

(
∆̃(T )

k (ω j ) >χ2
ν(ω j )

)
, j = 1, . . . , J ;k = 1, . . . ,10,

where ∆̃(T )
k (·) is defined in Theorem 4.3.1, ν(ω j ) = K (ω j )[K (ω j )−1]/2 if

ω j ∈ {0,π}, and ν(ω j ) = K (ω j )2 otherwise, and

Γ= {
ω1, . . . ,ωJ

}⊂ [0,π]

is a grid of frequencies. Following the discussion of Section 4.3.4, we
choose

ω1 = 0; ω2 = 2BT ; ωJ−1 =π−2BT ; ωJ =π;

and ω3, . . . ,ωJ−2 equispaced with spacing ∆ω= 2BT
10π . The reason behind

this choice is that the spectral density operators are computed by weighted
averaging of the periodogram operator on frequencies belonging to an
interval of length 2BT . Therefore the spectral density operators will be
very variable (approximately independent) for two frequencies separated
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by 2BT , but not very variable if the frequencies are at distance less than
2BT . Our choice of∆ω corresponds to a coverage of each interval of length
2BT with at least 9 = 10−1 points of the grid Γ, except of course near the
extremities {0,π}.

Boxplots of the raw p-values for k = 1, . . . ,4 and T ∈ {128,1024} are shown
for the Wiener scenario in Figures 4.14 to 4.19 (pages 186 to 191), for the
White-noise scenario in Figures 4.20 to 4.25 (pages 193 to 198), and for
the Student5 scenario in Figures 4.26 to 4.31 (pages 200 to 205). In each
of these plots, we drew a solid curve representing the p-value that would
have been observed if we replaced the sample version of the spectral
density operator and its eigenstructure by their true counterparts for
computing (4.3.1). This curve shows at which frequencies we would be
able to detect the differences between the two spectral density operators,
within each fixed value of k. We notice that the p-values (pb

j ,k )b=1,...,B

seem to be uniformly distributed for ma.diff= 0, and their distribution
is skewed towards zero at frequencies/k regions where the difference
between the two spectral densities can indeed be detected; the skewness
is accentuated for larger values of T , and also for larger values of ma.diff.

For each depth level k, and each b, we adjust the p-values (pb
j ,k ) j=1,...,J

using the Holm procedure. We then estimate the probability of rejecting
the global null hypothesis HG :=⋂

ω∈Γ Hω at level α, within the depth k,
by

B−1
B∑

b=1
1

(
min

j=1,...,J
pb

j ,k ≤α
)

. (4.3.13)

The results of this procedure—with α= 5%, and k ∈ {1, . . . ,5}—are shown
in Figures 4.32 on page 207, 4.33 on page 208 and 4.34 on page 209 for the
Wiener, White-noise and Student5 scenarios, respectively. We notice
that the level is respected in each scenario, and for each sample size
T = 128, . . . ,1024. For the Wiener scenario, choosing k = 1 does not yield
a powerful test, even with a sample size of T = 1024. However, taking k = 2
seems to already be reasonably powerful, even at sample size T = 256,
at which it is almost as competitive as k = 3,4,5. For larger sample sizes,
choosing k larger yields big differences in power: for instance in the
case T = 1024, at ma.diff= 0.2, the power increases by roughly 0.2 if we
increase k by one. The White-noise and Student5 scenarios are more
surprising: quite often, the case k = 1 yields the most (or near to the
most) powerful test amongst k = 1,2, . . . ,5. At sample size T = 1024, and
ma.diff= 0.3, the difference in power between k = 1 and k = 5 is about
40%, in favour of k = 1.

We also show in Figure 4.9 on page 177 the estimated probabilities of
rejection for the global null, when the truncation level k is chosen either
by AIC or by AIC∗. That is, if we denote by K (ω), respectively K ∗(ω), the
truncation level K that minimizes the AIC, respectively the AIC∗ criteria,
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we plot the values of

B−1
B∑

b=1
1

(
min

j=1,...,J
pb

j ,K (ω) ≤α
)

(4.3.14)

and

B−1
B∑

b=1
1

(
min

j=1,...,J
pb

j ,K ∗(ω) ≤α
)

(4.3.15)

for each ma.diff ∈ {0,0.1, . . . ,0.5} and T = 64,128, . . . ,1024, forα= 5%. We
see that in the Wiener scenario, criterion AIC is much better than AIC∗.
However, in the White-noise or Student5 scenarios, the opposite holds.
Moreover, for the low sample sizes T = 64, AIC seems to fail. Except for
that, in every scenario and every other sample size, both criteria seem
to respect the level α = 5%. The power using either AIC criterion is not
necessarily larger than that obtained using a fixed pre-chosen value for the
truncation level k (that is, without correcting for multiplicity in the choice
of k). However, it is not clear how to choose k a priori. Therefore, for most
power in rejecting the global hypothesis HG , we recommend using the
AIC criterion in settings that are quite smooth (when the eigenvalues of
the spectral density operators decay quickly), and the AIC∗ criterion in
rougher settings (when the eigenvalues of the spectral density operators
decay slowly).

4.3.6 Further Comparison at the Level of the Minicircles?

We have shown in this section how to compare the dynamics of DNA
minicircles, or more generally two functional time series, by comparing
their spectral density operators, first marginally at each frequency, and
then by adjusting the marginal p-values for multiplicities in order to
locate where in frequency these differences occur. It turned out for our
minicircles that their differences are significant at all frequencies. The
goal of the next section is to look at finer differences between the dynamics
of the two minicircles, and detect where on the minicircles, and within
each frequency, the differences occur.
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4.4 Significant Frequencies,

and Localization of Differences on the Minicircles

We now wish to detect more detailed differences between CAP and TATA:
we wish to first select frequencies at which CAP and TATA are significantly
different (the significant frequencies), and then detect and localize on
the minicircles, within each significant frequency, where the differences
between the spectral density operators of CAP and TATA occur.

The basic idea is to base our procedure on the differences in the (i , j )-th
basis coefficient between the spectral density operator of CAP and TATA,
at a given frequency ω. Let us denote by fa

ω, respectively fa,(T )
ω , the 80×80

coefficient matrices with respect to the periodic B-spline basis (King et al.
2010) of the true spectral density operator, respectively the sample spectral
density operator, at frequency ω, for the time series X a

t , a = 1,2. We shall
call fa

ω the projected spectral density operator, and fa,(T )
ω the projected

sample spectral density operator, and denote by fω(i , j ) the (i , j )-th entry
of the matrix fω. The local null hypotheses we wish to test for are of the
form

Hω(i , j ) : f1
ω(i , j ) = f2

ω(i , j ), i , j = 1, . . . ,80;ω ∈ [0,π].

By symmetry of the projected spectral density operator, we restrict our-
selves to the indices 1 ≤ i ≤ j ≤ 80. We point out that this approach
is different from a classical multivariate approach, as discussed in Re-
mark 4.4.1.

Remark 4.4.1 (Differences with multivariate analysis). Although the idea
of comparing at the level of basis coefficients seems like a multivariate
approach, it differs from it in that the choice of the basis functions will
influence the qualitative conclusions that can be drawn from the analysis.
Our choice of a periodic B-spline basis allows one to distinguish differences
between CAP and TATA that are very localized on the minicircles. Another
choice could be that of a wavelet basis, which would allow one to detect
differences between CAP and TATA across multiple scales. The choice of the
basis is therefore intimately related the directions (in function space) in
which the test is most powerful.

For each frequency ω and each 1 ≤ i ≤ j ≤ 80, assuming fω(i , i )fω( j , j ) 6= 0,
we can use the projected sample spectral density operator to construct
a p-value p(ω; i , j ) for the null hypothesis Hω(i , j ), as described in the
following section.
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4.4.1 Approximate p-values for Localizing Differences
Within Frequencies

Theorem 3.6.5 tells us that under
⋂80

i , j=1 Hω(i , j ),
p

T BT (f1,(T )
ω − Circular Gaussian

random variable are

defined in

Definition 3.12.1 on

page 134

f2,(T )
ω ) will

be asymptotically distributed as a random matrix f̆ω, which follows a
complex Gaussian distribution (which is not necessarily circular; see
Picinbono (1996), Schreier & Scharf (2010) ) with mean zero, and second-
order structure given by

E
[
f̆ω1 (i , j )f̆ω2 (k, l )

]= 4πκ2 · [η(ω1 +ω2)fω1 (i ,k)f−ω1 ( j , l )+η(ω1 −ω2)fω1 (i , l )f−ω1 ( j ,k)
]

,

(4.4.1)

where κ2 = ∫
RW (x)2d x and η(ω) = 1 if ω ∈ {0,±π,±2π}, and zero other-

wise. We shall use this asymptotic distribution to obtain, for each (i , j ),
an approximate p-value for the null hypothesis Hω(i , j ), by renormalizing
properly the difference D(T )

ω =p
T BT (f1,(T )

ω − f2,(T )
ω ). In the following, we

shall use the notation f̃ω = (f1,(T )
ω + f2,(T )

ω )/2. The test statistic we use is

L(T )(ω, i , j ) =


∣∣∣D(T )

ω (i , j )
∣∣∣2

/
{
4πκ2

[|f̃ω(i , j )|2 + f̃ω(i , i )f̃ω( j , j )
]}

if ω ∈ {0,π}∣∣∣D(T )
ω (i , i )

∣∣∣2
/
{
4πκ2|f̃ω(i , i )|2} if ω ∈ (0,π), i = j ,{

|D(T )
ω (i , j )|2/P −ℜ

[
(D(T )

ω (i , j ))2R
]

/P
}

/(2πκ2) if ω ∈ (0,π), i 6= j ,

where ℜ(·) denotes the real part of a complex number,

P = P (ω, i , j ) = f̃ω(i , i )f̃ω( j , j )−|f̃ω(i , j )|4/[f̃ω(i , i )f̃ω( j , j )]

and R = R(ω, i , j ) = [ f̃ω(i , j ) ]2/[f̃ω(i , i )f̃ω( j , j )].

The following proposition gives the asymptotic distribution of L(T ), and
its proof follows easily from results of Chapter 3 and Picinbono (1996):

Proposition 4.4.2. Assume conditions of Theorem 3.6.5 hold, and

BT → 0 & T BT →∞ as T →∞.

Under Hω(i , j ), if fω(i , i )fω( j , j ) 6= 0, the asymptotic distribution of the test
statistic L(T )(ω, i , j ) is χ2

1 if ω ∈ {0,π} or i = j , and χ2
2 if i 6= j and ω ∈ (0,π).

The reason the form of the test statistic L(T )(ω, i , j ) is quite complicated
in the case i 6= j &ω ∈ (0,π) is that in this case, D(T )

ω (i , j ) follows a com-
plex distribution that is not circular, and its renormalization cannot be
done via the “usual” formula for Gaussian random vectors (Picinbono
1996, Schreier & Scharf 2010). Using Proposition 4.4.2, we can compute
the approximate p-values p(ω, i , j ),ω ∈ [0,π], i ≤ j . Notice that within a
frequency, the p-values

{
p(ω, i , j ) : i ≤ j

}
are correlated, with a compli-

cated correlation structure. For instance, for ω ∈ {0,π} or i = j & k = l , the
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asymptotic covariance is given by

lim
T→∞

cov
(
L(T )(ω, i , j ),L(T )(ω,k, l )

)= 2 corr
(
f̆ω(i , j ), f̆ω(k, l )

)2
, (4.4.2)

which is in general non-zero, see (4.4.1).

4.4.2 Back to the computation of the P-values within a frequency

The p-values are only computed on a subgrid Γ = {ω1, . . . ,ωL} ⊂ [0,π],
which is chosen such that |ωi−ω j | ≥ 2BT , so that the p-values across differ-
ent ω j s are approximately independent (see discussion in Section 4.3.4).
We chose to select significant frequencies and localize the differences
between CAP and TATA in a way that controls the expected average of the
false discovery proportion over the significant frequencies (Benjamini &
Bogomolov 2014). To make this statement precise, let pl = {p(ωl ; i , j ) : 1 ≤
i ≤ j ≤ 80} be the set of p-values at frequency ωl , and P = {p1, . . . ,pL} be
the set of all p-values over the grid Γ. Let S(P) be the selection procedure
for the significant frequencies, based on all the p-values P, that is S(P) ⊂ Γ,
and |S(p)| denote the number of significant frequencies. Let FDP(ω) =
V (ω)/R(ω) be the false discovery proportion at frequency ω, where V (ω)
denotes the (unknown) number of wrong rejections within frequency ω,
and R(ω) denotes the total number of rejections at frequency ω. The error
criterion we will seek to control is

E

[ ∑
l∈S(P)

FDP(ωl )/max{|S(P)|,1}

]
. (4.4.3)

Notice that if the selection procedure S is implemented without relying
on the data, (4.4.3) simplifies to

∑
l∈S FDR(ωl )/|S|, the average FDR over

the selected frequencies, where FDR(ωl ) = E [V (ωl )/R(ωl )].
To select the significant frequencies and select the null hypotheses to
reject within each significant frequency while controlling the expected
average false discovery proportion (FDP) (4.4.3) at the level α, we use the
following procedure (see Benjamini & Bogomolov 2014, Theorem 1 and
Section 5):

1. Adjust, within each frequency ωl , the p-values pl for the control
of the FDR, and denote the result by ql , also called q-values (see
Remark 4.4.3).

2. Select the significant frequencies S by applying the BH procedure
to the set of minimum q-values {minq1,minq2, . . . ,minqL}.

3. Within each significant frequency ωl , l ∈ S, reject the null hypothe-
ses whose corresponding q-value are smaller than |S|α/L.

In addition to controlling the error criterion (4.4.3), this procedure also
has the additional property that it controls the FDR at the level of the
frequencies.
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Remark 4.4.3 (P-value adjustment within each frequency). Since the p-
values
pl =

{
p(ωl ; i , j ) : 1 ≤ i ≤ j ≤ 80

}
are correlated with a non-trivial correla-

tion structure (see e.g. (4.4.2)), we cannot use the BH procedure to control
the FDR, nor the more recent procedures (which require e.g. dependence
in finite blocks, see Storey et al. (2004) and Schwartzman et al. (2008) for
instance). We therefore use the conservative version of FDR which works
under arbitrary dependence structure of the p-values (Benjamini & Yeku-
tieli 2001, Theorem 1.3) to obtain the q-values ql . Nevertheless, numerical
simulation (not shown here) that we carried out to assess the validity of
our procedure suggested that the BH procedure seems to control the FDR
within each frequency. Further work along this line would be of interest.

The result of applying this procedure to our minicircle data with α= 0.05,
and on the grid of frequencies

Γ= {0,0.15,0.32,0.49,0.64,0.81,0.98,1.15,1.3,1.47,

1.64,1.81,1.96,2.13,2.3,2.47,2.62,2.79,2.96,3.14},

are shown in Figure 4.10 on page 183 in the form of zero-one plots, which
show graphically the regions where the spectral density operators of CAP
and TATA differ significantly. We first notice that all the tested frequencies
are significant, which is not surprising since the frequency tests (Section
4.3) suggested that the null hypothesis Hω for each fixed frequency was
rejected with a very small p-value. We also see that the rejected hypotheses
are mostly situated on the diagonal of the spectral density operators,
i.e., the rejected nulls are mostly of the form Hω(i , j ) with |i − j | small.
This means that most of the differences in the dynamics of CAP and
TATA are about how their local interactions (between X t (τ) and X0(σ) for
|τ−σ| small) differ. This is not surprising since we have already seen (in
Section 4.2.2) that most of the energy of the minicircles is in their local
interactions. Nevertheless, some differences are detected farther away
from the diagonal, at frequencies ω= 0.15 or ω= 0.64 for instance. This
is potentially interesting, since a difference far from the diagonal would
mean that the dynamics of the DNA minicircles, although being mostly
local, seem to have different long-range (|τ−σ| large) effects, which are
visibly varying throughout distinct frequencies. Further interpretation
of these off-diagonal differences is difficult; notice also that since they
are rare and we are controlling a FDR-type error, these might be false
discoveries.

Another interesting conclusion is that the differences between the two
minicircles do not only reside in the region where their base-pairs se-
quence is different (see Table 4.1), but extends to other regions of the
minicircles. This phenomenon could be explained intuitively as a prop-
agation effect by the following thought experiment, which is of course
informal: imagine that a DNA minicircle is vibrating in a solution, and
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that we introduce an impulse (or shock) on a localized region. If the im-
pulse is strong enough (stronger than the “average” vibrations of the DNA
minicircle that are due to its interaction with water molecules), it will
propagate as a wave along the minicircle, with decreasing amplitude as it
moves further along. The distance that the wave will travel will depend
on the strength of the impulse, on the vibrations of the DNA minicircle,
and on its mechanical properties. Nevertheless, we can imagine that
this distance will be approximately an increasing function of the impulse
strength. Therefore, a localized but strong enough vibration on a DNA
minicircle could propagate and affect other regions of the minicircle. Ap-
plying this idea to CAP and TATA, their differences in base pairs (that is
very localized) might create different kinds of vibrations that are also very
localized, but might propagate along the minicircles, and have an impact
on the vibrations of other regions of the minicircle.

4.5 Outlook

We have presented in this chapter a methodology for comparing the dy-
namics of DNA minicircles (or more generally any pair of functional time
series), by comparing their spectral density operators either at the level of
frequencies, or jointly at the level of frequencies and on the minicircles.
Our technique was based on a multiple testing approach, thus allowing to
localize the differences between the two spectral density operators with
overall significance. Extensions and ameliorations of the methodology
presented in this chapter can be done in several directions. One could use
the asymptotic Gaussian structure of the sample spectral density operator
at each frequency to increase the detecting power within each frequency,
by looking at excursion sets of the sample spectral density kernel, and
using the theory of excursion sets of Gaussian processes (Adler 1990, 2000,
Vanmarcke 2010). The multiplicity correction could also be improved, by
estimating and taking into account the local dependency (in frequencies)
of the sample spectral density operators that are present in finite samples.



Figure 4.10 – The plots show the regions on the minicircles, for each frequency, where the spectral density
operators of CAP and TATA are overall significantly different at a 5% level (with respect to the error crite-
rion (4.4.3)). Each plot represents the regions of differences (in black) between the spectral density kernels of
the two minicircles. The two grey vertical and horizontal bands correspond to the region where the base-pair
sequences of the two DNA minicircles are different.
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Figure 4.11 – The percentage of variation per frequency (computed using (4.3.12)), for the Wiener sce-
nario. The bottom curve corresponds to the percentage of variation explained by k = 1, the one just above
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Figure 4.12 – The percentage of variation per frequency, for the White-noise and Student5 scenarios.
These are computed using (4.3.12). The bottom curve corresponds to the percentage of variation explained
by k = 1, the one just above corresponds to k = 2, as so on. Notice the scale of the y-axis.
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Figure 4.14 – Box plot of the computed p-values pb
j ,k for the Wiener scenario. The x-axis represents the

frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each row
corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each frequency
ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve represents

the p-value that would have been observed if we replaced the sample version of the spectral density operator
and its eigenstructure by their true counterparts.
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Figure 4.15 – Box plot of the computed p-values pb
j ,k for the Wiener scenario. The x-axis represents the

frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each row
corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each frequency
ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb
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the p-value that would have been observed if we replaced the sample version of the spectral density operator
and its eigenstructure by their true counterparts.
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wiener scenario, ma.diff=0.2

Figure 4.16 – Box plot of the computed p-values pb
j ,k for the Wiener scenario. The x-axis represents the

frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each row
corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each frequency
ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve represents

the p-value that would have been observed if we replaced the sample version of the spectral density operator
and its eigenstructure by their true counterparts.
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wiener scenario, ma.diff=0.3

Figure 4.17 – Box plot of the computed p-values pb
j ,k for the Wiener scenario. The x-axis represents the

frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each row
corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each frequency
ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve represents

the p-value that would have been observed if we replaced the sample version of the spectral density operator
and its eigenstructure by their true counterparts.
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wiener scenario, ma.diff=0.4

Figure 4.18 – Box plot of the computed p-values pb
j ,k for the Wiener scenario. The x-axis represents the

frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each row
corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each frequency
ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve represents

the p-value that would have been observed if we replaced the sample version of the spectral density operator
and its eigenstructure by their true counterparts.
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Figure 4.19 – Box plot of the computed p-values pb
j ,k for the Wiener scenario. The x-axis represents the

frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each row
corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each frequency
ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve represents

the p-value that would have been observed if we replaced the sample version of the spectral density operator
and its eigenstructure by their true counterparts.
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Figure 4.20 – Box plot of the computed p-values pb
j ,k for the White-noise scenario. The x-axis represents

the frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each
row corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each
frequency ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve

represents the p-value that would have been observed if we replaced the sample version of the spectral
density operator and its eigenstructure by their true counterparts.
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Figure 4.21 – Box plot of the computed p-values pb
j ,k for the White-noise scenario. The x-axis represents

the frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each
row corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each
frequency ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve

represents the p-value that would have been observed if we replaced the sample version of the spectral
density operator and its eigenstructure by their true counterparts.
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Figure 4.22 – Box plot of the computed p-values pb
j ,k for the White-noise scenario. The x-axis represents

the frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each
row corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each
frequency ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve

represents the p-value that would have been observed if we replaced the sample version of the spectral
density operator and its eigenstructure by their true counterparts.
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white−noise scenario, ma.diff=0.3

Figure 4.23 – Box plot of the computed p-values pb
j ,k for the White-noise scenario. The x-axis represents

the frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each
row corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each
frequency ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve

represents the p-value that would have been observed if we replaced the sample version of the spectral
density operator and its eigenstructure by their true counterparts.
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white−noise scenario, ma.diff=0.4

Figure 4.24 – Box plot of the computed p-values pb
j ,k for the White-noise scenario. The x-axis represents

the frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each
row corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each
frequency ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve

represents the p-value that would have been observed if we replaced the sample version of the spectral
density operator and its eigenstructure by their true counterparts.
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Figure 4.25 – Box plot of the computed p-values pb
j ,k for the White-noise scenario. The x-axis represents

the frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each
row corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each
frequency ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve

represents the p-value that would have been observed if we replaced the sample version of the spectral
density operator and its eigenstructure by their true counterparts.
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Figure 4.26 – Box plot of the computed p-values pb
j ,k for the Student5 scenario. The x-axis represents the

frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each row
corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each frequency
ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve represents

the p-value that would have been observed if we replaced the sample version of the spectral density operator
and its eigenstructure by their true counterparts.
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Figure 4.27 – Box plot of the computed p-values pb
j ,k for the Student5 scenario. The x-axis represents the

frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each row
corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each frequency
ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve represents

the p-value that would have been observed if we replaced the sample version of the spectral density operator
and its eigenstructure by their true counterparts.
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Figure 4.28 – Box plot of the computed p-values pb
j ,k for the Student5 scenario. The x-axis represents the

frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each row
corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each frequency
ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve represents

the p-value that would have been observed if we replaced the sample version of the spectral density operator
and its eigenstructure by their true counterparts.



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

omega.subgrid

p−
va

lu
e

T=128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

omega.subgrid

p−
va

lu
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

omega.subgrid

p−
va

lu
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

omega.subgrid

p−
va

lu
e

frequency ω

omega.subgrid

p−
va

lu
e

T=1024

K
=

1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

omega.subgrid

p−
va

lu
e

K
=

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

omega.subgrid

p−
va

lu
e

K
=

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

omega.subgrid

p−
va

lu
e

K
=

4

frequency ω

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

student5 scenario, ma.diff=0.3

Figure 4.29 – Box plot of the computed p-values pb
j ,k for the Student5 scenario. The x-axis represents the

frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each row
corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each frequency
ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve represents

the p-value that would have been observed if we replaced the sample version of the spectral density operator
and its eigenstructure by their true counterparts.
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student5 scenario, ma.diff=0.4

Figure 4.30 – Box plot of the computed p-values pb
j ,k for the Student5 scenario. The x-axis represents the

frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each row
corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each frequency
ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve represents

the p-value that would have been observed if we replaced the sample version of the spectral density operator
and its eigenstructure by their true counterparts.
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Figure 4.31 – Box plot of the computed p-values pb
j ,k for the Student5 scenario. The x-axis represents the

frequencies ω, the left and right columns represent respectively the cases T = 128 and T = 1024. Each row
corresponds to a different value of k, ranging from k = 1 (top row) to k = 4 (bottom row). From each frequency
ω j ∈ Γ, j = 1, . . . , J , a box plot of the p-values (pb

j ,k )b=1,...,1000 is plotted at ω=ω j . The solid curve represents

the p-value that would have been observed if we replaced the sample version of the spectral density operator
and its eigenstructure by their true counterparts.
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Figure 4.32 – The estimated probability of rejection of the global null hypothesis at level 5% in the Wiener
scenario for each depth k ∈ {1, . . . ,5}, see (4.3.13). The x-axis represents the coefficient ma.diff, and each
plot corresponds to a different sample size, ranging from T = 128 (top) to T = 1024 (bottom). The horizontal
dotted line corresponds to the 5% level, and the standard deviation, based on a normal approximation, is at
most 0.016.



● ● ● ● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

le
ve

l/p
ow

er

● ● ● ● ● ●

 T=128

● ● ●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

le
ve

l/p
ow

er

● ● ●
●

●

●

 T=256

● ●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

le
ve

l/p
ow

er

● ●
●

●

●

●

 T=512

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

le
ve

l/p
ow

er

● ●

●

●

●

● T=1024

● ●K=1  K=2  K=3  K=4  K=5  

white−noise scenario

ma.diff

Figure 4.33 – The estimated probability of rejection of the global null hypothesis at level 5% in the
White-noise scenario for each depth k ∈ {1, . . . ,5}, see (4.3.13). The x-axis represents the coefficient
ma.diff, and each plot corresponds to a different sample size, ranging from T = 128 (top) to T = 1024
(bottom). The horizontal dotted line corresponds to the 5% level, and the standard deviation, based on a
normal approximation, is at most 0.016.
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Figure 4.34 – The estimated probability of rejection of the global null hypothesis at level 5% in the Student5
scenario for each depth k ∈ {1, . . . ,5}, see (4.3.13). The x-axis represents the coefficient ma.diff, and each
plot corresponds to a different sample size, ranging from T = 128 (top) to T = 1024 (bottom). The horizontal
dotted line corresponds to the 5% level, and the standard deviation, based on a normal approximation, is at
most 0.016.
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APPENDIX A
Selected results for Hilbert and

Banach Spaces

We first present Banach spaces, which are (possibly infinite) dimensional
spaces with a topology given by a norm. Some references are (Dunford &
Schwartz 1988a, Rudin 1991, Ciarlet 2013)

A.1 Banach Spaces

A (complex) Banach space is a couple (B ,‖·‖), where B is a vector space,
‖·‖ : B →C is a norm, under which the space B is complete (every Cauchy
sequence converges to an element in B).
Let (B1,‖·‖1) and (B2,‖·‖2) be complex Banach spaces. A function T : B1 →
B2 is called a bounded linear operator, or just bounded operator, if it is
linear and there exists a positive constant C such that ‖T x‖2 ≤C‖x‖1 for
all x ∈ B1. The smallest such C is

|||T |||∞ := sup
x 6=0

‖T x‖
‖x‖ .

We denote the set of bounded operators T : B1 → B2 by S∞(B1,B2). The
special case S∞(B1,C) is of particular interest, and is called the dual, or
the topological dual, of B1. It is denoted by B∗

1 , and consists of all bounded
linear functionals on B1.
S∞(B1,B2) is actually a Banach space if we define (λT )x = λ(T x) and
(S +T )x = (Sx)+ (T x) for all x ∈ B1, λ ∈C and S,T ∈S∞(B1,B2).
If B1 = B2 = B , we use the shorthand notation S∞(B) = S∞(B ,B). For



214 A. SELECTED RESULTS FOR HILBERT AND BANACH SPACES

S,T ∈S∞(B), the product ST defined by ST x = S(T x), x ∈ B is a bounded
operator, with |||ST |||∞ ≤ |||S|||∞|||T |||∞, and therefore ST ∈S∞(B). In par-
ticular, S∞(B) is an algebra over C.

A.1.1 Unique Linear Extension

Proposition A.1.1 (Ciarlet (2013, Theorem 3.1-1)). Let B1,B2 be Banach
spaces, and W ⊂ B1 be a dense subspace. Any continuous linear operator
T : W → B2 admits a unique continuous linear extension T ′ : B1 → B2,
defined by

T ′(x) = lim
n→∞T (xn) (A.1.1)

where (xn)n≥1 ⊂W is any sequence converging to x ∈ B1. Furthermore, T ′

is continuous, and ∣∣∣∣∣∣T ′∣∣∣∣∣∣∞ = |||T |||∞ (A.1.2)

A.1.2 Bounded Multilinear Mappings

Let B1, . . . ,Bk ,B be complex Banach spaces. A mapping T : B1 ×Bk → B
is called a bounded (or continuous) multilinear mapping if it is linear in
each coordinate, and if there exists a constant c ≥ 0 such that

‖T (x1, . . . , xk )‖ ≤ c‖x1‖· · ·‖xk‖, xi ∈ Bi , i = 1, . . . ,k. (A.1.3)

The infimum of all c ≥ 0 satisfying (A.1.3) is denoted |||T |||∞, and satisfies

|||T |||∞ = sup{‖T (x1, . . . , xk )‖ : ‖x1‖, . . . ,‖xk‖ ≤ 1} .

The space of all multilinear bounded mappings T : B1×Bk → B is denoted
by Lk (B1, . . . ,Bk ;B), and is a Banach space when equipped with the norm
|||·|||∞. Furthermore there are canonical linear bijective isometries

Lk (B1, . . . ,Bk ;B) →L (B1;L (B2;L (. . . ;B))) (A.1.4)

A.2 Hilbert spaces

We now talk about Hilbert spaces, which are special kinds of Banach
spaces. Some references are Gohberg & Krejn (1971), Ringrose (1971),
Dunford & Schwartz (1988a,b), Gohberg et al. (1990), Kadison & Ringrose
(1997), Zhu (2007).
A real Hilbert space is a couple (H ,〈·, ·〉) where

1. H is a real vector space,

2. 〈·, ·〉 is a function H ×H →R satisfying for all u, v, w ∈ H and λ ∈R,

(a) 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 ⇐⇒ u = 0

(b) 〈u, v〉 = 〈v,u〉
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(c) 〈u +λv, w〉 = 〈u, w〉+λ〈v, w〉

3. H is complete metric space under the norm ‖u‖ :=p〈u,u〉.

A complex Hilbert space (H ,〈·, ·〉) is slightly different because of richer
structure of the complex field C:

1. H is a vector space,

2. 〈·, ·〉 is a function H ×H →C satisfying for all u, v, w ∈ H and λ ∈C,

(a) 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 ⇐⇒ u = 0

(b) 〈u, v〉 = 〈v,u〉
(c) 〈u +λv, w〉 = 〈u, w〉+λ〈v, w〉

3. H is complete metric space under the norm ‖u‖ :=p〈u,u〉.

Hereα denote the conjugate transpose ofα ∈C. The function 〈·, ·〉 is called
the inner product, or scalar product of H .
A Hilbert space is called separable if it contains a dense countable subset.
Every separable Hilbert space admits a (non-unique) orthonormal basis
(en)n≥1 which satisfies 〈en ,em〉 = δn,m , and

u = ∑
n≥1

〈u,en〉en , ∀u ∈ H .

From now on, H will denote a separable Hilbert space.

A.2.1 Operators on Hilbert Spaces

Let H be a (complex) separable Hilbert space with scalar product 〈·, ·〉 and
norm ‖·‖. Since a Hilbert space is particular type of Banach space, the
definition of bounded operator (and its norm) extends naturally to Hilbert
spaces. We will denote IdH the identity operator on H . If a bounded
operator T : H → H ′ between two Hilbert spaces preserves the inner-
product, i.e. 〈

T x,T y
〉= 〈

x, y
〉

, ∀x, y ∈ H , (A.2.1)

then it is called an isometry. Notice that an isometry is necessarily injec-
tive, and therefore allows one to view the Hilbert space H as a subspace
of H ′ (with same norm) via the identification H ∼= T (H). An operator
T : H → H ′ that admits an inverse S : H ′ → H (i.e. T S = IdH ′ and ST = IdH )
is called an isomorphism. If it is also an isometry, it is called an isometric
isomorphism, or a unitary operator.
To any bounded operator T on H corresponds another bounded operator
T †, called the adjoint of T , and which satisfies the property

〈
T x, y

〉= 〈
x,T † y

〉
, ∀x, y ∈ H .
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In particular, |||T †|||∞ = |||T |||∞. An operator which satisfies T = T † is called
self-adjoint, or hermitian, and

T hermitian =⇒ |||T |||∞ = sup{|〈T x, x〉| : ‖x‖ = 1} .

The space of bounded operators is very large. A important subspace of it
are the compact operators.

Definition A.2.1. A bounded operator T ∈ S∞(H) is compact if every
bounded sequence {xn : n ≥ 1} admits a subsequence

{
xnk : k ≥ 1

}
such that

T xnk converges in H.

Compactness of an operator is a strong condition: for instance, the iden-
tity operator is not compact. However, compact operators have nice
properties. Let us denote by Sc (H) the set of compact operators. This
set is actually a closed subspace of S∞(H), and admits the following
characterization:

Proposition A.2.2 (Singular Value Decomposition). A bounded operator
T on H is compact if, and only if there exists orthonormal bases (en : n ≥
1) and ( fn : n ≥ 1) of H and a sequence of decreasing positive numbers
(λn : n ≥ 1) ⊂ [0,+∞) with λn → 0 such that

T x = ∑
n≥1

λn
〈

x, fn
〉

en , x ∈ H , (A.2.2)

The λns are called the singular values of T , and we write

sing(T ) = (λn : n ≥ 1).

We point out that the sequence (λn : n ≥ 1) does not need to be strictly
decreasing. The following Theorem gives an important characteristic of
the singular values of a compact operator:

Theorem A.2.3 (Gohberg et al. (1990, Chapter VI, Theorem 3.1)). Let T
be a compact operator on H, with singular values λ1(T ) ≥λ2(T ) ≥ ·· · ≥ 0.
Then for any n = 1,2, . . . ≤ dimH, we have

n∑
j=1

λ j (T ) = max
U ,ψ1,...,ψn

∣∣∣∣∣ n∑
j=1

〈
U Tψ j ,ψ j

〉∣∣∣∣∣ ,

where the maximum is taken over all unitary operators U on H, and all
orthonormal systems

{
ψ1, . . . ,ψn

}⊂ H.

The following Lemma tells us about the behaviour of the singular values
of compact operators under compact perturbations

Lemma A.2.4 (Gohberg & Krejn (1971, Corollaire 2.3, p.31), Bosq (2000,
Lemma 4.2), Gohberg et al. (1990, Chapter VI, Corollary 1.6)).
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Let T,S be compact operators on H, with singular value decompositions

T = ∑
n≥1

λn
〈

., fn
〉

en ,

S = ∑
n≥1

µn〈., vn〉un .

Then,
|λn −µn | ≤ |||T −S|||∞, ∀n ≥ 1. (A.2.3)

Notice that the singular values of either S or T need not be strictly decreas-
ing.

If (Tm)m≥1 is a sequence of compact operators on H converging to T ∈
Sc (H) in the operator norm, this lemma tells us the singular values of Tm

(arranged in decreasing order, and repeated according to their multiplic-
ity) converge to the singular values of T (also arranged in decreasing or-
der) uniformly in n as m →∞. Now if (Tm)m≥1 and T are also self-adjoint,
there is a similar perturbation result for their eigenspaces. We need to in-
troduce some notation: Let u⊗2 v denote the operator on S∞(H ) defined
by (u⊗2 v) f = 〈

f , v
〉

u, for u, v, f ∈ H . Using this notation, we write the
singular value decompositions of Tm and T :

T = ∑
n≥1

µnen ⊗2 en

Tm = ∑
n≥1

µn,men,m ⊗2 en,m

{µn : n ≥ 1} is a non-increasing positive sequences tending to zero. We
denote by {λn}n≥1 the decreasing sequence of distinct elements of {µn}n≥1,
and define the set

Ik = {i ≥ 1 :µi =λk },

and we denote its cardinality by mk = |Ik |. We will also write

I = {
i ≥ 1 :µi > 0

}= ⋃
k≥1&λk>0

Ik (A.2.4)

for the set of indices of the repeated non-zero eigenvalues of T , and

J = {
j ≥ 1 :λ j > 0

}
, (A.2.5)

the set of indices of the non-repeated non-zero eigenvalues of T . We
define

Πk = ∑
i∈Ik

ei ⊗2 ei ,

which is the projection onto the kth eigenspace of T , also called the k-th
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eigenprojector of T . This way, we have

T = ∑
j∈J
λ jΠ j ,

Tm = ∑
j∈J

( ∑
i∈I j

µi ,mei ,m ⊗2 ei ,m

)

It turns out that the term in parentheses converges to λ jΠ j as m →
∞. This is rigorously stated in the following perturbation result for the
eigenspaces of compact self-adjoint operators.

Theorem A.2.5. Let {Tm}m≥1 be a sequence of compact self-adjoint opera-
tors on H converging to the compact operator T in the operator norm |||·|||∞.
Then, using the notation introduced above, we have∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
( ∑

i∈Ik

ei ,m ⊗2 ei ,m

)
−Πk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞

→ 0, m →∞,∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
( ∑

i∈Ik

µi ,mei ,m ⊗2 ei ,m

)
−λkΠk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞

→ 0, m →∞.

Proof. The result is a consequence of Riesz & Sz.-Nagy (1968, Theorem,
§135, p.369), since

sup
x∈H\{0}

‖(Tm −T )x‖
‖x‖+‖T x‖ ≤ |||Tm −T |||∞ → 0, m →∞.

A.2.2 Schatten Spaces

Notice that sing : Sc (H) → c0, where c0 is the space of sequences a =
(a1, a2, . . .) such that limn an → 0. Recall that `p , p ∈ [1,+∞), is the space
of sequences a = (a1, a2, . . .) ⊂RN such that

‖a‖`p :=
( ∑

n≥1
|an |p

)1/p

<∞,

and that 1 ≤ p ≤ q <∞ implies `p ⊂ `q ⊂ c0. The set of compact operators
whose singular values are in `p are called Schatten spaces:

Proposition A.2.6 (Definition). For p ∈ [1,∞), we define the Schatten
space Sp (H) as the space of operators

Sp (H) = {
T ∈Sc (H) : sing(T ) ∈ `p

}
. (A.2.6)

It is a Banach space with the norm

|||T |||p = ∥∥sing(T )
∥∥
`p

, T ∈Sp (H).
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Equivalently, it can be shown that a bounded operator T on H is in Sp (H )
if, and only if ∑

n≥1
|〈Ten ,en〉|p <∞

for every orthonormal basis (en) of H . As a consequence, the Schatten
classes are closed under taking adjoints. The Schatten classes have the
same inclusion properties of the `p spaces, namely 1 ≤ p ≤ q <∞ implies

S1(H) ⊂Sp (H) ⊂Sq (H) ⊂Sc (H) ⊂S∞(H),

where we recall that S∞(H) is the space of bounded linear operators on
H .
For any u, v ∈ H , we can define an bounded operator u⊗2 v on H by

(u⊗2 v)h = 〈h, v〉u, h ∈ H . (A.2.7)

The operator u⊗2 v is called a rank-one operator (because its image is a
subspace of H of dimension one), and any finite linear combination of
rank-one operators is called a finite rank operator. The rank-one operators
have the property that

|||u⊗2 v |||p = ‖u‖‖v‖, p ∈ [1,∞], (A.2.8)

and therefore the finite rank operators belong to all the Schatten spaces.
An important fact is that the space of finite-rank operators is actually
dense in each of the Schatten spaces Sp (H), p ∈ [1,∞), with their respec-
tive norm, as well as in the space of compact operators, with the operator
norm. Similarly to the `p spaces, the Schatten spaces satisfy a Hölder-type
inequality:

Proposition A.2.7 (Hölder inequality for Schatten spaces). Let 1 ≤ r, s, t ≤
∞, such that r−1 = s−1 + t−1, and S ∈Ss(H),T ∈St (H). Then ST ∈Sr (H)
and

|||ST |||r ≤ |||S|||s |||T |||t . (A.2.9)

A.2.2.1 Trace-class Operators

We now look at the Schatten space S1(H), which is called the space of
trace-class or nuclear operators on H , and for which we can define the
trace.

Definition A.2.8. We define the trace of an operator T ∈S1(H) by

Tr(T ) =
∑

n≥1
〈Ten ,en〉, (A.2.10)

where (en) is an orthonormal basis of H.
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The definition of the trace is independent of the choice of the orthonormal
basis (en), and we have the following properties

Proposition A.2.9. For all S ∈S1(H), u, v ∈ H,

1. Tr(u⊗2 v) = 〈u, v〉.
2. For any orthonormal basis (en)n≥1,

|Tr(S)| ≤
∑

n≥1
|〈Sen ,en〉| ≤ |||S|||1, S ∈S1(H).

3. Tr
(
S†

)= Tr(S),

4. if 〈Sx, x〉 ≥ 0 for all x ∈ H (i.e. S is positive), then

Tr(S) = |||S|||1 ≥ 0.

In particular, the trace defines a continuous linear functional S1(H) →C.
Moreover, if 1 ≤ s, t ≤∞ such that s−1+ t−1 = 1, then for any S ∈Ss(H ) and
T ∈St (H),

Tr(ST ) = Tr(T S). (A.2.11)

A.2.2.2 Hilbert–Schmidt Operators

Another important Schatten space is S2(H), called the space of Hilbert–
Schmidt operators. It is particular, because it is actually a Hilbert space, if
we equip it with the scalar product

〈T,S〉S2 = Tr
(
T †S

)
= ∑

n≥1
〈Sen ,Ten〉, S,T ∈S2(H), (A.2.12)

where (en) is any orthonormal basis of H . In particular, |||T |||2 =
∑

n≥1 ‖Ten‖2,
and

{
ei ⊗2 e j : i , j ≥ 1

}
is an orthonormal basis of S2(H). Here are some

properties of the tensor product ·⊗2 · (recall the definition of ⊗2; see
(A.2.7))

Proposition A.2.10. For any u, v, f , g ∈ H, A,B ∈S2(H)

1. ·⊗2 · is linear on the left, and conjugate-linear on the right,

2.
〈

u⊗2 v, f ⊗2 g
〉
S2

= 〈
u, f

〉〈
g , v

〉= 〈
(u⊗2 v)g , f

〉
,

3. 〈A,u⊗2 v〉S2
= 〈Av,u〉 = 〈

v ⊗2 u, A†
〉
S2

,

4. |||u⊗2 v |||2 = ‖u‖‖v‖,

5. (u⊗2 v)( f ⊗2 g ) = 〈
f , v

〉
u⊗2 g ,

6. (u⊗2 v)† = v ⊗2 u,

7. (A
⊗

2 B)† = B
⊗

2 A.
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Proof. The proof follows from the definition and the properties of the
inner product, and is therefore omitted.

The following result characterizes the Hilbert–Schmidt operators on L2

spaces:

Proposition A.2.11 (Weidmann 1980, Theorem 6.11). Let H = L2(M ,C),
with M a measurable subset of Rn . An operator T : H → H is Hilbert–
Schmidt if and only if ∃k ∈ L2(M ×M ,C) such that for all f ∈ H,

T f (x) =
∫

M
k(x, y) f (y)d y a.s. for x ∈ M .

We have |||T |||2 =
Î

M×M |k(x, y)|2d xd y, and the adjoint T † is induced by

the kernel k†(x, y) = k(y, x).

The following result follows from Fubini’s theorem:

Lemma A.2.12. Let K ⊂ Rn be measurable and compact. Let a,b,c ∈
L2(K ×K ,R), with induced operators A,B ,C on L2(K ,R). That is,

A f (τ) =
∫

K
a(τ,σ) f (σ)dσ, in L2, ∀ f ∈ L2(K ,R).

We can define the product operator AB of two operators by composition,
i.e. the operator AB is defined by (AB) f = A(B f ) for f ∈ L2(K ,R), and has
kernel

r (τ,σ) =
∫

K
a(τ,µ)b(µ,σ)dσ, in L2.

This operation is associative.

A.2.3 Complexification of a Real Hilbert Space

Given a real Hilbert space HR, we can construct a new complex Hilbert
space H which contains a subspace isometrically isomorphic to HR. The
process is called the complexification of HR (Halmos 1974, Conway 1990).
H consists of all pairs (u, v), where u, v ∈ HR, and we define the sum

(u, v)+ (u′, v ′) = (
u +u′, v + v ′) , u,u′, v, v ′ ∈ HR,

and the multiplication by complex numbers α+ iβ by

(α+ iβ)(u, v) = (αu −βv,βu +αv).

Furthermore, we define the inner-product on H by〈
u + iv,u′+ iv ′〉= 〈

u,u′〉+〈
v, v ′〉− i

[〈
u, v ′〉−〈

v,u′〉] . (A.2.13)

Notice that the induced norm satisfies

‖u + iv‖2 = ‖u‖2 +‖v‖2,
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for all u, v ∈ HR. In other words, the formulas behave as if (u, v) = u + iv ,
and we will write the generic element of H in this way. We notice that the
mapping ι : HR→ H defined by ι(u) = u + iv is an R-linear isomorphism,
which allows us to identify HR with ι(HR) ⊂ H . Furthermore, we define
the real part and imaginary part mappings ℜ,ℑ : H → HR by

ℜ(u + iv) = u, ℑ(u + iv) = v.

These maps are R-linear, but not C-linear. The space H with 〈·, ·〉 is a
Hilbert space, and is called the complexification of HR . Notice that the
complexification of a complex Hilbert space is not necessarily isomet-
rically isomorphic to itself. We shall call Complexified Hilbert Space a
Hilbert space H that is the complexification of a real Hilbert space HR.
If (en)n≥1 is an orthonormal basis of HR, then it is also an orthonormal
basis of H , and any bounded linear mapping T on HR can be extended to
an operator T ′ on H by the formula

T ′(u + iv) = Tu + iT v.

The extension has the following properties: for all bounded operators S,T
on HR,

1. T ′ is bounded with
∣∣∣∣∣∣T ′∣∣∣∣∣∣∞ = |||T |||∞

2. (αT )′ =αT ′, α ∈R
3. (T +S)′ = T ′+S′

4. (T †)′ = (T ′)†

We also define the conjugation · : H → H by

u + iv = u − iv.

Notice that it is not linear with respect to C-multiplication, but linear with
respect to R-multiplication. The conjugation has the following properties:

1. It is an involution, i.e. u + iv = u + iv , and

2.
〈

x, y
〉= 〈

x, y
〉

, x, y ∈ H

We can also define the conjugate of an operator T ′ on H by the formula

T ′x = (
T ′x

)
(A.2.14)

and the transpose of an operator by

T ′T = T ′† (A.2.15)

These have the following properties:
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1. T ′T = T ′† = T ′†

2. T ′T restricted to corresponds to the usual adjoint operator on HR,
i.e.

〈Tu, v〉 =
〈

u,T ′Tv
〉

, ∀u, v ∈ HR,T ∈S∞(HR).

Example A.2.13. Here are some examples of complexified Hilbert spaces:

1. Cd is the complexification of Rd .

2. L2 ([0,1],C) is the complexification of L2 ([0,1],R).

3. `2(C) is the complexification of `2(R).

A.3 Tensor Products

A.3.1 Hilbert Tensor Products

Given k Hilbert spaces (H j ,〈·, ·〉 j ), j = 1, . . . ,k, on can construct their al-
gebraic tensor product, denoted H1¯·· ·¯Hk , whose elements are linear
combinations of simple tensors ⊗k

j=1 u j = u1⊗·· ·⊗uk , where u j ∈ H j . The
simple tensors are linear in each coordinate, that is,

u1⊗·· ·⊗ul−1⊗
(
ul +λu′

l

)⊗ul+1⊗·· ·⊗uk =
u1⊗·· ·⊗ul−1⊗ul ⊗ul+1⊗·· ·⊗uk

+λ(
u1⊗·· ·⊗ul−1⊗u′

l ⊗ul+1⊗·· ·⊗uk
)

,

for all u j ∈ H j , ul ,u′
l ∈ Hl ,λ ∈C. H0 is a linear space, which we equip with

the following inner product, that we call〈
k⊗

j=1
u j ,

k⊗
j=1

v j

〉
:=

k∏
j=1

〈
u j , v j

〉
j .

The completion of H0 under the norm generated by this scalar product,∥∥∥∥ k⊗
j=1

u j

∥∥∥∥=
k∏

j=1

∥∥u j
∥∥

j ,

is a Hilbert space, called the Hilbert tensor product, whose inner product
is called the Hilbert tensor scalar product, and whose norm is called the
Hilbert tensor norm. The Hilbert tensor product is denoted

H = k⊗
j=1

H j = H1⊗H2⊗·· ·⊗Hk , (A.3.1)

If (e j ,n)n≥1 is a orthonormal basis of H j , for j = 1, . . . ,k, then(
e1,n1 ⊗e2,n2 ⊗·· ·⊗ek,nk

)
n1,...,nk≥1
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is an orthonormal basis of H . Taking tensor products of Hilbert spaces is
associative (provided we identify isomorphic spaces), that is

(H1⊗H2)⊗H3 = H1⊗ (H2⊗H3) = H1⊗H2⊗H3,

and commutative,
H1⊗H2 = H2⊗H1.

In the particular case of the Hilbert space H = L2 ([0,1],C), we have that

(ϕ⊗ψ)(τ,σ) =ϕ(τ)ψ(ω), ϕ,ψ ∈ L2 ([0,1],C);τ,σ ∈ [0,1].

Given bounded operators Ti : Hi → H ′
i , i = 1, . . . ,k between Hilbert spaces,

we define the their tensor product

T1
⊗̃ · · · ⊗̃ Tk :

k⊗
i=1

Hi −→
k⊗

i=1
H ′

i

as the unique bounded linear operator satisfying(
T1

⊗̃ · · · ⊗̃ Tk

)
(x1⊗·· ·xk ) = T1x1⊗·· ·⊗Tk xk ,

for all xi ∈ Hi , i = 1, . . . ,k. Amongst the various properties of the tensor
product of bounded operators, we have that(

T1
⊗̃

T2

)† = T †
1

⊗̃
T †

2 .

The k-fold tensor product of H with himself will be denoted H⊗k

A.3.1.1 2-fold Tensor products and Hilbert–Schmidt Operators

Provided H is a complexified Hilbert space, i.e. it has a mapping · : H → H
that is anti-linear and whose square is the identity, the tensor product
H ⊗H and the space of Hilbert–Schmidt operators S2(H ) are isomorphic:

Proposition A.3.1. The mapping Φ : H ⊗H →S2(H) defined by the con-
tinuous linear extension of

Φ(u⊗v) = u⊗2 v , ∀u, v ∈ H (A.3.2)

is an isometric isomorphism. In particular,

〈A,B〉 = 〈Φ(A),Φ(B)〉S2 , ∀A,B ∈ H ⊗H (A.3.3)

Proof. Fix a basis (en)n≥1 of H . The mapping is clearly linear, it’s image
contains all the elements

{
ei ⊗2 e j : i , j ≥ 1

}
and property (A.3.3) is valid

on the basis
{
ei ⊗e j : i , j ≥ 1

}
. Therefore the continuous linear extension

is well defined, and the proof is complete.



A.3 TENSOR PRODUCTS 225

A.3.2 Projective Tensor Products of Banach Spaces

We present briefly in this Section the projective tensor products of Banach
spaces, which are of interest for us because of their natural analogy to
the nuclear norm of operators on Hilbert spaces (see Proposition A.3.2).
Some references for this Section are Schatten (1950), Grothendieck (1953),
Ryan (2002), and Diestel et al. (2008).

Given Banach spaces (Bi ,‖·‖i )i=1,2, we define the norm projective norm
‖·‖π : B1¯B2 →R on its algebraic tensor by

‖x‖π = inf

{
n∑

i=1
‖ui‖1‖vi‖2 : x =

n∑
i=1

ui ⊗vi

}
. (A.3.4)

This is indeed a norm, with the property that

‖u⊗v‖π = ‖u‖1‖v‖2, ∀u ∈ B1, v ∈ B2. (A.3.5)

Furthermore, it is the largest norm amongst all the so-called cross-norms
‖·‖∗, satisfying

‖u⊗v‖ ≤ ‖u‖1‖v‖, ∀u ∈ B1, v ∈ B2

We denote by B1⊗πB2 the completion of B1¯B2 with respect to the pro-
jective norm, and call it the projective tensor product of B1 and B2. It is
a Banach space. Furthermore, iterating the process, we can define the
k-fold projective tensor product of Banach spaces B1, . . . ,Bk ,

B1⊗π · · ·⊗πBk

and we have, up to isomorphisms,

B1⊗πB2 = B2⊗πB1, (B1⊗πB2)⊗πB3 = B1⊗π (B2⊗πB3) (A.3.6)

In the special case where the Banach spaces are in fact Hilbert spaces, we
notice that the projective norm is stronger than the Hilbert tensor norm,
and up to isomorphism, we can say that

H1⊗π H2 ⊂ H1⊗H2, (A.3.7)

and the inclusion is continuous, since the Hilbert tensor norm is also a
cross-norm.

If Ti : Bi → B ′
i , i = 1, . . . ,k, are bounded operators between Banach spaces,

then

(T1⊗π · · ·⊗πTk ) :
k⊗π

i=1
Bi →

k⊗π
i=1

B ′
i

denotes the unique bounded operator satisfying

(T1⊗π · · ·⊗πTk )(x1⊗·· ·⊗xk ) = T1x1⊗·· ·⊗Tk xk ,
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for all xi ∈ Bi , i = 1, . . . ,k. Furthermore,

|||T1⊗π · · ·⊗πTk |||∞ ≤ |||T1|||∞ · · · |||Tk |||∞.

Using this and (A.3.7), we can show that

H1⊗π · · ·⊗π Hk ⊂ H1⊗·· ·⊗Hk (A.3.8)

up to isomorphism.
The following universal property characterizes the projective tensor prod-
uct (Ryan 2002, Theorem 2.9): For any Banach space B , the spaces L2(B1,B2;B)
of bilinear continuous mappings B1×B2 → B and the space L (B1⊗πB2;B)
of bounded linear mapping B1⊗πB2 → B are isometrically isomorphic.
Furthermore, using (A.1.4), we can extend this statement to

L (B1⊗π · · ·⊗πBk ;B) =Lk (B1, . . . ,Bk ;B) (A.3.9)

up to a isometric isomorphism.

A.3.2.1 Projective Tensor Products and Nuclear Operators

The is a very close relationship between projective tensor products of
Hilbert spaces and nuclear operators.

Proposition A.3.2 (Schatten (1950)). Let H be a separable Hilbert space.
Then the mapping Ψ : H ⊗π H →S1(H) defined by linear extension of

Ψ(u⊗v) = u⊗2 v , ∀u, v ∈ H (A.3.10)

is a bijective isomorphism.

A.3.3 Permutation of Tensors

We describe here briefly permutations of tensor products. We will do it for
the Banach space case, with the projective tensor product .⊗π ., but this
holds also for the Hilbert space tensor product.
Given Banach spaces B1, . . . ,Bn , and a permutationν : {1, . . . ,n} → {1, . . . ,n},
we define

Permν (·) : B1⊗πB2⊗π · · ·⊗πBn → Bν(1)⊗π · · ·⊗πBν(n)

as the unique linear operator satisfying

Permν

(
n⊗

i=1
xi

)
= n⊗

i=1
xν(i ),

for all simple tensors. It is clearly a bijective isomorphism. We can also
extend the permutation operator Permν (·) to tensors of operators. Given
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bounded operators Ti : Bi → B ′
i , recall that we have defined their tensor

as the bounded linear operator

T1⊗π · · ·⊗πTn : B1⊗π · · ·⊗πBn → B ′
1⊗π · · ·⊗πBn

satisfying ⊗πn
i=1 Ti

(⊗n
i=1 xi

)=⊗n
i=1 Ti xi for all simple tensors. We define

Permν (T1⊗π · · ·⊗πTn) = Tν(1)⊗π · · ·⊗πTν(n).

We have the following property:

Permν

([
n⊗π

i=1
Ai

][
n⊗

i=1
xi

])
= Permν

(
n⊗π

i=1
Ai

)
Permν

(
n⊗

i=1
xi

)
(A.3.11)

A.3.4 Kronecker Products

For two operators A,B ∈S∞(H ), we define their Kronecker product A
⊗̃

2 B ∈
S∞(S∞(H)), by A

⊗̃
2 B(C ) = AC B †, for C ∈S∞(H). It has the following

properties:

Proposition A.3.3. For any A,B ,C ,D ∈S∞(H), u, v, f , g ∈ H,

1. · ⊗̃2 · is linear on the left, and sesquilinear on the right.

2. (A
⊗̃

2 B)(u⊗2 v) = Au⊗2 B v

3.
∣∣∣∣∣∣A

⊗̃
2 B

∣∣∣∣∣∣∞ ≤ |||A|||∞|||B |||∞
4. (A

⊗̃
2 B)(C

⊗̃
2 D) = AC

⊗̃
2 BD

5. (u⊗2 v)
⊗̃

2 ( f ⊗2 g ) = (u⊗2 f )
⊗

2(v ⊗2 g )

6. (A
⊗̃

2 B)† = A† ⊗̃
2 B †, where (A

⊗̃
2 B) is viewed as bounded opera-

tor on the Hilbert space S2(H).

When A,B ∈S2(H), A
⊗̃

2 B ∈S2(S2(H)), and we have

Proposition A.3.4. For any A,B ,C ,D ∈S2(H), u, v, f , g ∈ H,

1.
〈

A
⊗̃

2 B ,C
⊗̃

2 D
〉
S2

= 〈A,C〉S2
〈D,B〉S2

2.
∣∣∣∣∣∣A

⊗̃
2 B

∣∣∣∣∣∣
2 = |||A|||2|||B |||2

In the case H = L2 ([0,1],C), if A,B ∈S2(H ) are Hilbert–Schmidt operators,
hence they are also kernel operators, with kernels a(τ,σ),b(τ,σ), respec-
tively. The operator A

⊗̃
2 B is then also a Hilbert–Schmidt operator on

S2(H), with kernel

k(τ,σ, x, y) = a(τ, x)b(σ, y).

For two operators A,B ∈S∞(H), we also define their transpose Kronecker
product A

⊗̃
T B ∈S∞(S∞(H)), by A

⊗̃
T B(C ) = (A

⊗̃
2 B)(CT) = ACTBT,

for C ∈S∞(H).
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Proposition A.3.5. For any A,B ,C ,D ∈S∞(H), u, v, f , g ∈ H,

1.
(

A
⊗̃

T B
)

C =
(

A
⊗̃

2 B
)

C
†

2. ·⊗̃T · is bilinear.

3. (A
⊗̃

T B)(u⊗2 v) = Av ⊗2 Bu

4. (u⊗2 v)
⊗̃

T( f ⊗2 g ) = (u⊗2 g )
⊗̃

2

(
f ⊗2 v

)
=

(
u⊗2 f

)⊗
2
(
g ⊗2 v

)
5.

∣∣∣∣∣∣A
⊗̃

T B
∣∣∣∣∣∣∞ ≤ |||A|||∞|||B |||∞

6. (A
⊗̃

T B)(C
⊗̃

T D) = (AD
⊗̃

2 BC )

7. (A
⊗̃

T B)(C
⊗̃

2 D) = AD
⊗̃

T BC

8. (A
⊗̃

2 B)(C
⊗̃

T D) = AC
⊗̃

T BD

9. Viewing (A
⊗̃

T B) as an operator on the Hilbert space S2(H), we get

(A
⊗̃

T B)† = B †
⊗̃

T A†, (A
⊗̃

T B)T = BT
⊗̃

T AT

In the case H = L2 ([0,1],C), if A,B ∈S2(H ) are Hilbert–Schmidt operators,
they are also kernel operators, with kernels a(τ,σ),b(τ,σ), respectively.
The operator A

⊗̃
T B is then also a Hilbert–Schmidt operator on S2(H),

with kernel
k(τ,σ, x, y) = a(τ, y)b(σ, x).

Proposition A.3.6. For any A,B ,C ,D ∈S2(H),

1.
〈

A
⊗̃

T B ,C
⊗̃

T D
〉
S2

= 〈A,C〉S2
〈D,B〉S2

2.
∣∣∣∣∣∣A

⊗̃
T B

∣∣∣∣∣∣
2 = |||A|||2|||B |||2

The proofs of this subsection are omitted; they follow easily from the
definition of the Kronecker products and tensor products, by evaluating
(if needed) the left-hand and right-hand side of the equations on simple
tensors.



APPENDIX B
The Bochner Integral

Since we are working with random elements of Hilbert spaces, or even
Banach spaces, we will need to give a meaning to integrals of mappings
taking values in such spaces. The Bochner integral gives a rigorous treat-
ment of this. Some references are Hildebrandt (1953), Yosida (1995), Ryan
(2002), Mikusinski & Weiss (2014).
Let (Ω,O ,µ) be a complete finite measure space, i.e., O is a σ-algebra
of subsets of Ω, and µ : O → [0,+∞) be σ-additive, with µ(Ω) <∞. For
A ∈ O , We call µ(A) the measure of A. We assume that S ⊂ A ∈ O and
µ(A) = 0 =⇒ S ∈O .

Definition B.0.7 (and Proposition). Let B be a complex Banach space,
with norm ‖·‖, and Borel σ-algebra B. A function X : (Ω,O ) → (B ,B) is
called strongly measurable if

X is measurable and X (Ω) is separable,

and Bochner integrable if

X is strongly measurable and
∫
Ω
‖X ‖dµ<∞.

Notice that if B is separable, then “measurable” and “strongly measur-
able” have the same meaning. Strong measurability has the following
characterization:

Lemma B.0.8. Let X :Ω→ B be a function. The following assertions are
equivalent:

1. X is strongly measurable;
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2. There is a sequence of simple functions (Xn)n≥1 such that

‖Xn(ω)−X (ω)‖→ 0, ∀ω ∈Ω,n →∞;

3. X (Ω) is separable, andφ(X ) :Ω→C is measurable for all φ ∈ B∗ (the
dual of B).

Moreover, if X is strongly measurable, then one can choose the sequence of
simple functions (Xn) such that ‖Xn(ω)‖ ≤ 2‖X (ω)‖ for all ω ∈Ω.

Proposition B.0.9. For a Bochner integrable function X , we define its
integral

∫
Ω X dµ ∈ B to be the unique element satisfying

φ(
∫
Ω

X dµ) =
∫
Ω
φ(X )dµ, ∀φ ∈ B∗, (B.0.1)

where B∗ is the space of all linear and continuous functionals φ : B → C

(the topological dual of B). Moreover, for A ∈O , we define∫
A

X dµ=
∫
Ω

X 1Adµ.

We have the following properties:

1. For every Bochner integrable function, there exists a unique element
in B satisfying (B.0.1).

2. There exists a sequence of simple functions Xn =∑n
i=1 bi 1Ai converg-

ing pointwise to X , such that∫
Ω
‖X −Xn‖dµ→ 0 (B.0.2)

Moreover, for every such sequence of simple functions, we have∫
Ω

X dµ= lim
n→∞

n∑
i=1

biµ(Ai ) (B.0.3)

3. Contraction property:
∥∥∫

Ω X dµ
∥∥≤ ∫

Ω ‖X ‖dµ

4. if T : B → B ′ is a bounded linear operator onto another Banach space
B ′, then

T
∫
Ω

X dµ=
∫
Ω

T X dµ (B.0.4)

The space of Bochner integrable functions will be denoted L (Ω,B ,µ).

Proposition B.0.10 (Dominated Convergence Theorem). Let Xn ∈L (Ω,B ,µ)
for all n = 1,2, . . . , and let X :Ω→ B be strongly measurable such that Xn →
X pointwise µ-almost everywhere. If there exists a function g :Ω→ [0,+∞)
such that ‖Xn‖ ≤ g for all n and

∫
Ω g dµ<∞, then
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1. X ∈L (Ω,B ,µ)

2. limn→∞
∫
Ω Xndµ= ∫

Ω X dµ

We now wish to define Lp -Bochner spaces. Let N = {
N ∈O :µ(N ) = 0

}
be

the set of all measurable sets of measure zero. We first deal with the case
p ∈ [1,∞).

Definition B.0.11. 1. For p ∈ [1,∞), we define L p (Ω,B ,µ) to be the set
of all functions X :Ω→ B such that X 1Ω\N is strongly measurable
for some N ∈N , and

‖X ‖L p :=
(∫
Ω\N

‖X ‖p dµ

)1/p

<∞.

2. For p =∞, we define L∞(Ω,B ,µ) to be the set of all functions X :
Ω→ B such that X 1Ω\N is strongly measurable for some N ∈N , and

‖X ‖L ∞ := inf
{
c ∈ [0,∞] :µ (‖X ‖ > c) = 0

}<∞.

Let now p ∈ [1,+∞]. For X ∈L p (Ω,B ,µ), we define its equivalence classes
[X ] by

[X ] = {
Y ∈L p (Ω,B ,µ) : Y 1Ω\N = X 1Ω\N for some N ∈N

}
,

We have that the space

Lp (Ω,B ,µ) = {
[X ] : X ∈L p (Ω,B ,µ)

}
, (B.0.5)

equipped with the norm ‖[X ]‖Lp = ‖X ‖L p is a Banach space. We shall
often abuse of notation and write X instead of [X ].
When Ω ⊂ Rd for some positive integer d , and µ = λ is the Lebesgue
measure, we shall write Lp (Ω,B) instead of Lp (Ω,B ,λ).
The following result, which follows from Proposition B.0.8 and the Domi-
nated Convergence Theorem, will be used later:

Proposition B.0.12. The space of simple functions is dense in (Lp (Ω,B ,µ),‖·‖Lp ),
for each p ∈ [1,∞).

B.0.4.1 Bochner L2 Spaces on [−π,π]

The particular case of the space L2([−π,π],B), which consists of functions
X : [−π,π] → B with

‖X ‖2
L2 =

∫ π

−π
‖X (ω)‖2dω<∞,

will be of particular interest in the thesis. The following Lemma gives
some of its dense subsets.
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Lemma B.0.13. The following subspaces are dense in Lp ([−π,π],B), p ∈
[1,∞):

1. The step functions{
J∑

j=1
b j 1[ω j ,ω′

j ] : b j ∈ B ;ω j ,ω′
j ∈ [−π,π], j = 1, . . . , J ; J = 1,2, . . .

}
(B.0.6)

2. The càdlàg step functions{
J∑

j=1
b j 1[ω j ,ω j+1) : b j ∈ B ;−π=ω1 <ω2 < ·· · <ωJ+1 =π; J = 1,2, . . .

}
(B.0.7)

3. The trigonometric polynomials{
N∑

n=−N
bnen : bn ∈ B ,n =−N ,−N +1, . . . , N ; N ∈N

}
, (B.0.8)

where en(ω) = e iωn ,ω ∈ [−π,π].

Proof. Since the space of simple functions is dense in L2([−π,π],B), we
only need to show that each of the subspaces is dense in the space of
simple functions {

J∑
j=1

b j 1I j : b j ∈ B ; I j ∈O ; J <∞
}

.

By the triangle inequality, it is enough to show that b1I , b ∈ B , I ∈O , can
be approximated arbitrarily well from each subspace.

(i) For the step functions, notice that∥∥∥∥∥b1I −
J∑

j=1
b1[ω j ,ω′

j ]

∥∥∥∥∥
p

Lp

= ‖b‖p
∫ π

−π

∣∣∣∣∣1I (ω)−
J∑

j=1
1[ω j ,ω′

j ](ω)

∣∣∣∣∣
p

dω,

(B.0.9)
therefore the result follows from classical Lebesgue integration the-
ory.

(ii) For the càdlàg step functions, the result follows from (i) once we
notice that each step function is equal to a càdlàg step function
almost everywhere.

(iii) For the trigonometric polynomials, similarly to (B.0.9),∥∥∥∥∥b1I −
∑

|n|<N
bαnen

∥∥∥∥∥
p

Lp

= ‖b‖p
∫ π

−π

∣∣∣∣∣1I (ω)− ∑
|n|<N

αne iωn

∣∣∣∣∣
p

dω,

(B.0.10)
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whereαn ∈C, and the result follows from the theory of Fourier series,
since Fejér kernels is an approximate identity.

B.0.4.2 The Case B =Sp (H)

Let us add a note about the case where B is a Schatten class of operators
on a Hilbert space. We will take here Ω= [−π,π]. First, notice that if A :
[−π,π] →Sp (H) is strongly measurable, then so is A†(ω) = (A(ω))†. Fur-
thermore, if A1 : [−π,π] → Sp (H) and A2 : [−π,π] → Sq (H) are strongly
measurable, with p−1 +q−1 = 1, then the function A1 A2(ω) = A1(ω)A2(ω)
is a strongly measurable mapping [−π,π] → S1(H). Indeed, let (A1,n),
respectively (A2,n), be a sequence of simple functions in converging to A1

in |||·|||p , respectively A2 in |||·|||q . Then by Hölder’s inequality,∣∣∣∣∣∣A1 A2 − A1,n A2,n
∣∣∣∣∣∣

1 ≤
∣∣∣∣∣∣A1 − A1,n

∣∣∣∣∣∣
p |||A2|||q + ∣∣∣∣∣∣A1,n

∣∣∣∣∣∣
p

∣∣∣∣∣∣A2 − A2,n
∣∣∣∣∣∣

q ,

and therefore A1,n A2,n converges pointwise to A1 A2. Since a product of
simple function is a simple function, A1 A2 is strongly measurable.
The following result shall be useful at a later stage:

Proposition B.0.14. Let S ∈ Lp ([−π,π],S1(H )) and A1, A2 ∈ L2q ([−π,π],S∞(H)),
where 1 ≤ p, q ≤ ∞ and p−1 + q−1 = 1. Then the function A1S A†

2(ω) =
A1(ω)S(ω)A†

2(ω) belongs to L1([−π,π],S1(H)).

Proof. Assume without loss of generality that both A1 and A2 are strongly
measurable on [−π,π]. Then T = A1S A†

2 is also strongly measurable, and
using Hölder’s inequality for the Schatten norms and for the Lp norms,
we get∫ π

−π

∣∣∣∣∣∣∣∣∣A1(ω)S(ω)A†
2(ω)

∣∣∣∣∣∣∣∣∣
1

dω≤
∫ π

−π
|||A1(ω)|||∞|||S(ω)|||1

∣∣∣∣∣∣∣∣∣A†
2(ω)

∣∣∣∣∣∣∣∣∣∞dω

≤
(∫ π

−π
|||Fω|||p1 dω

)1/p (∫ π

−π
|||A1(ω)|||2q

∞ dω
∫ π

−π
|||A2(ω)|||2q

∞ dω

)1/2q

<∞,

which finishes the proof.

B.0.4.3 Approximate Identities for Bochner Spaces, and Cesaro-sums of

Fourier Series

LetT= [−π,π] denote the unit circle, viewed as the quotient groupR/2πZ,
i.e. α+2kπ=α ∈T for all α ∈T, let B be a Banach space, and the measure
µ=λ, the Lebesgue measure. For a function K ∈ L1(T,C), and a function
f ∈ Lp (T,B), p ∈ [1,∞], we define the convolution K ∗ f :T→ B by

(K ∗ f )(α) =
∫ π

−π
K (ω) f (α−ω)dω, α ∈T. (B.0.11)
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Notice that K ∗ f is strongly measurable, and that by Young’s inequality
(Hunter & Nachtergaele 2001, Theorem 12.58),(∫ π

−π

∥∥K ∗ f (ω)
∥∥p dω

)1/p

≤
∫ π

−π
|K (ω)|dω

(∫ π

−π

∥∥ f
∥∥p dω

)1/p

,

in other words,
∥∥K ∗ f

∥∥
Lp ≤ ‖K ‖L1

∥∥ f
∥∥

Lp , and the mapping f 7→ K ∗ f is
a continuous and linear mapping Lp (T,B) → Lp (T,B). Furthermore, a
simple change of variable yields K ∗ f = f ∗K .
A sequence of functions (Kn)n≥1 ∈ L1(T,C) is called an approximate iden-
tity if

1. supn ‖Kn‖L1 <∞,

2. limn→∞
∫ π
−πKn(ω)dω= 1

3. limn→∞
∫
δ<|x|<π |Kn(ω)|dω= 0, for all 0 < δ<π.

Approximate identities are important in real Fourier analysis, but also
for us, because their nice properties extend to Bochner spaces. Let us
introduce the notation C (T,B) to denote continuous strongly measurable
functions f :T→ B . The following result is proved by following the proof
of Edwards (1967, Theorem 3.2.2), by replacing the modulus by ‖·‖ when
appropriate:

Proposition B.0.15. Let (Kn)n≥1 be an approximate identity. Then

lim
n→∞sup

ω∈T

∥∥Kn ∗ f (ω)− f (ω)
∥∥= 0, f ∈C (T,B), (B.0.12)

and
lim

n→∞
∥∥Kn ∗ f − f

∥∥
p = 0, f ∈ Lp (T,B), (B.0.13)

provided p ∈ [1,∞).

A concrete example of a approximate identity is the Fejér kernel,

FN (ω) = 1

2πN

(
sin(Nω/2)

sin(ω/2)

)2

= (2π)−1
∑

|n|<N

(
1− |n|

N

)
e iωn , (B.0.14)

which is important because it is related to the Cesaro-sum of a Fourier
series.

Proposition B.0.16. Let p ∈ [1,∞). For f ∈ Lp (T,B), let

f̂ (n) = (2π)−1
∫ π

−π
f (ω)e−iωndω ∈ B ,

and define

σN f (ω) := ∑
|n|<N

(
1− |n|

N

)
f̂ (n)e iωn .
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Then, ∥∥σN f − f
∥∥

Lp → 0, N →∞. (B.0.15)

Furthermore, if f , g ∈ Lp (T,B), p ∈ [1,∞], and they satisfy∫ π

−π
f (ω)e iωndω=

∫ π

−π
g (ω)e iωndω, ∀n ∈Z, (B.0.16)

then f = g almost everywhere, and if they are both continuous, f = g
everywhere.

Proof. Notice that

σN f (ω) = ∑
|n|<N

(
1− |n|

N

)
f̂ (n)e iωn = FN ∗ f (ω),

and by Proposition B.0.15 implies (B.0.15).

For (B.0.16), since Lp (T,B) ⊂ L1(T,B) for any 1 < p ≤∞, we only need to
prove the result for p = 1. Notice that f̂ (n)− ĝ (n) = 0 for all n. Therefore,
applying (B.0.15) to the function h = f − g yields ‖σN h −h‖L1 → 0. But
since σN h = 0, the left-hand side is ‖h‖L1 , and does not depend on N .
Therefore ‖h‖L1 = 0 and therefore f = g almost surely.

B.0.4.4 Fourier Series for Hilbert Space Valued Functions

Let us now consider the Bochner space L2(T, H), where T = R/2πZ is
defined on page 233, and H is a complex separable Hilbert space. We
define

〈A1, A2〉L2 =
∫ π

−π
〈A1(ω), A2(ω)〉dω,

for A1, A2 ∈ L2(T, H). This turns the space L2(T, H) into a separable
Hilbert space.

The following Proposition tells us that Fourier series for the space L2(T, H )
enjoy the same L2 properties as Fourier series for functions in L2(T,C).

Proposition B.0.17. For any A ∈ L2(T, H), we have

lim
N→∞

∫ π

−π

∥∥∥∥∥A(ω)− ∑
|n|<N

e iωn
(

1

2π

∫ π

−π
e−iαn A(α)dα

)∥∥∥∥∥
2

dω= 0

Remark B.0.18. For any A ∈ L2(T, H), we have Denoting the Fourier coef-
ficients

an = 1

2π

∫ π

−π
e−iαn A(α)dα ∈ H ,

and the truncated Fourier sums

SN = ∑
|n|<N

anen ,
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where en(ω) = exp(iωn), the statement of the Proposition can be rewritten
in the following compact form:

‖A−SN‖L2 → 0, as N →∞.

Proof of Proposition B.0.17. We shall use the notation of Remark B.0.18.

Let us first show that (SN )N≥1 is a Cauchy sequence in L2(T, H). Notice
that for all N , M ≥ 1,

〈SN ,SM 〉L2 = ∑
|n|<N

∑
|m|<M

〈anen , amem〉L2

= ∑
|n|<N

∑
|m|<M

∫ π

−π
〈an , am〉exp[i(n −m)ω]dω

= ∑
|n|<N

∑
|m|<M

〈an , am〉
∫ π

−π
exp[i(n −m)ω]dω

= ∑
|n|<N

∑
|m|<M

〈an , am〉2πδn,m

= ∑
|n|<N

∑
|m|<M

〈an , am〉2πδn,m

= 2π
∑

|n|<min(N ,M)
‖an‖2.

Therefore, if N > M ≥ 1,

‖SN −SM‖2
L2 =

∑
M≤|n|<N

‖an‖2.

Let (ϕn)n≥1 be an orthonormal basis of H . We have∑
n∈Z

‖an‖2 = ∑
n∈Z

∑
k≥1

|〈an ,ϕk
〉|2

= ∑
n∈Z

∑
k≥1

∣∣∣∣〈 1

2π

∫ π

−π
e−iαn A(α)dα,ϕk

〉∣∣∣∣2

= ∑
k≥1

∑
n∈Z

∣∣∣∣ 1

2π

∫ π

−π
e−iαn〈

A(α),ϕk
〉

dα

∣∣∣∣2

= ∑
k≥1

∫ π

−π
|〈A(ω),ϕk

〉|2dω (by Parseval’s identity)

=
∫ π

−π

∑
k≥1

|〈A(ω),ϕk
〉|2dω

=
∫ π

−π
‖A(ω)‖2dω.

Therefore (SN )N≥1 is a Cauchy sequence, and converges to an element
S ∈ L2(T, H).
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Now notice that for any ϕ ∈ H , we have∫ π

−π
|〈A(ω)−SN (ω),ϕ

〉|2dω→ 0, as N →∞.

Indeed, the function
〈

A(·),ϕ
〉

is in L2 ([0,1],C), and〈
SN (·),ϕ

〉= ∑
|n|<N

en
〈

an ,ϕ
〉

is its truncated Fourier series, which converges in L2 ([0,1],C) to
〈

A(·),ϕ
〉

,
from the classical theory of Fourier series (see e.g. Edwards (1967)). There-
fore, we get∫ π

−π
|〈A(ω)−S(ω),ϕ

〉|2dω= lim
N→∞

∫ π

−π
|〈A(ω)−Sn(ω),ϕ

〉|2dω= 0,

for all ϕ ∈ H . This implies that S = A almost everywhere (indeed, replace
ϕ by ϕm ; for each m ≥ 1, A 6= S on a set of measure zero; the statement
follows since a countable union of measure zero sets has measure zero)
and finishes the proof.





APPENDIX C
Random Elements in Banach

and Hilbert Space

C.1 Generalities

In the special case where µ is a probability measure, denoted µ=P, the
Bochner integral allows us to define rigorously the notion of random
elements of a Banach space.

Definition C.1.1. Let (Ω,O ,P) be a complete probability space and B be a
Banach space. A random element of B is a strongly measurable function
X :Ω→ B. If

∫
Ω ‖X ‖dP<∞, we write

EX =
∫
Ω

X dP

In other words, if a random element X of B satisfies E‖X ‖ <∞, then its
expectation is well defined, and satisfies T EX = ET X for every bounded
operator T : B → B ′, where B ′ is another Banach space. In the particular
case where B = H is a separable Hilbert space, if X ,Y are random elements
of H with mean zero and finite second moment (E‖X ‖2 + E‖Y ‖2 <∞),
then the cross-covariance operator of X and Y ,

RX Y = E [X ⊗2 Y ]

is a well defined, and is a nuclear operator since

|||RX Y |||1 ≤ E |||X ⊗2 Y |||1 = E‖X ‖‖Y ‖ ≤
√
E‖X ‖2 E‖Y ‖2 <∞.
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Indeed, the first inequality comes from the contraction property of the
Bochner integral, and the second inequality comes from the Cauchy-
Schwarz inequality. In particular, since the trace is a linear operator,

Tr(RX Y ) = ETr(X ⊗2 Y ) = E〈X ,Y 〉.

Furthermore, if T,S are bounded operators on H , then(
T

⊗̃
2 S

)
E [X ⊗2 Y ] = E [T X ⊗2 SY ], (C.1.1)

since (T
⊗̃

2 S) is a bounded operator on S1(H) (by Hölder’s inequality),
and therefore

E〈T X ,SY 〉 = Tr
(
T RX Y S†

)
(C.1.2)

If X = Y , then the cross-covariance operator is simply called the covari-
ance operator, denoted R = E [X ⊗2 X ]. It is a hermitian positive operator,
which is trace-class, with trace

Tr(R) = ETr(X ⊗2 X ) = E‖X ‖2.

The following technical result will be useful for computing the cross-
covariance operator of mean square limits of random elements.

Lemma C.1.2. Let (Xn)n≥1, respectively (Yn)n≥1 be sequences of random
elements of H with finite second moment, converging in mean square to X ,
respectively Y , i.e.

E‖Xn −X ‖2 → 0, E‖Yn −Y ‖2 → 0, as n →∞.

Then the cross covariance operator of X and Y is well defined and

E [X ⊗2 Y ] = lim
n→∞ E [Xn ⊗2 Yn], in S1(H).

Proof. Recall that ‖X ‖L2 =
√
E‖X ‖2 defines a norm on L2(Ω, H ,P). There-

fore X and Y have both finite moments, and their cross-covariance oper-
ator is well-defined. Now since

E [X ⊗2 Y ]− E [Xn ⊗2 Yn] = E [(X −Xn)⊗2 Y ]+ E [Xn ⊗2(Y −Yn)],

the contraction property and (A.2.8) yield the result.

The following well-known result relates the trace of the covariance opera-
tor of a random element of an L2 space with an integral of its covariance
kernel:

Lemma C.1.3. Let K = ∏n
j=1[a j ,b j ] ⊂ Rn , where −∞ < a j < b j < ∞ for

j = 1, . . . ,n. Let µ denote Lebesgue measure on Rn . Let X be a random
element of

L2(K ,C) = {
f : K →C :

∥∥ f
∥∥

2 <∞}
,
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where ‖ f ‖2 =
√〈

f , f
〉

and

〈
f , g

〉= ∫
K

f g dµ, f , g ∈ L2(K ,C).

Let r (t , s) = cov(X (t ), X (s)) , t , s ∈ K be the covariance kernel of X , and R
be the operator on L2(K ,C) induced by the kernel. If E‖X ‖2

2 <∞, then R is
trace-class and ∫

K
r (t , t )dµ(t ) = Tr(R) <∞.

Proof. We already know that Tr(R) = E‖X − EX ‖2 < ∞. On the other
hand, Tonelli’s Theorem yields

E‖X − EX ‖2
2 =

∫
K
E |X (t )− EX (t )|2d t =

∫
K

r (t , t )dµ(t ).

Hence
∫

K r (t , t )dµ(t ) = Tr(R) <∞.

C.2 Convergence in Distribution

In this section, we briefly talk about convergence in distributions for ran-
dom elements of Banach or Hilbert space. Some references are Vakhania
et al. (1987), Ledoux & Talagrand (2011), Billingsley (1999), and Kallenberg
(1997).
Recall that a sequence of random elements (Xn) of a separable Banach
space B is said to converge in distribution to the random element X ∈ B
if P◦X −1

n converges weakly to P◦X −1. The following characterization of
convergence in distribution is very useful in practice:

Theorem C.2.1 (e.g. Ledoux & Talagrand (2011)). A sequence of random
elements (Xn) of a separable Banach space B converges in distribution to
the random element X ∈ B if and only if

Convergence of Projections: φ(Xn)
d−→φ(X ) for all φ ∈ B∗, and,

Tightness: (Xn) is tight, i.e.

sup
K

liminf
n→∞ PXn ∈ K = 1,

where the supremum is taken over all compact sets K ⊂ B, and

The tightness condition is crucial in proving convergence in distribution.
It is needed because otherwise we could have PX ∈ B < 1, a phenomenon
that can be intuitively understood as that “mass escaped to infinity”. The
convergence of the projections ensures that the limiting distribution is
indeed given by the law of X .
Since tightness is related to compact subsets, it is important to have a
characterization of all compact subsets of a given space, or at least to
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be able to construct “large” compact subset. For the Banach spaces of
continuous real functions on compact Hausdorff spaces, such a charac-
terization is given by the Arzelà-Ascoli Theorem. In the case where B = H
is a separable Hilbert space, I haven’t found an explicit characterization of
compact subset in the literature. If (en)n≥1 is an orthonormal basis of a
Hilbert space H , it can be shown that for every b = (b1,b2, . . .) ∈ `2(R), the
set { ∑

n≥1
anen : |an | ≤ |bn |∀n ≥ 1

}
(C.2.1)

is a compact subset of H . This following tells us how to construct compact
subsets that are larger that this one, because they will always contain the
sets elements of the form (C.2.1), and also elements of the form x =αnen ,
where αn → 0, but possibly with

∑
n≥1 |αn |2 =∞.

Lemma C.2.2 (A class of compact sets for separable Hilbert spaces). Let
H be a separable Hilbert space with scalar product 〈·, ·〉 and norm ‖·‖2.
For any sequence of integers 1 = n1 < n2 < ·· · , any sequence of positive
numbers lk such that limk→∞ lk = +∞, and any complete orthonormal
sequence (en)n=1,2,... of H, the set K = ⋂∞

k=1 Bk is compact, where Bk ={
x ∈ H :

∑∞
j=nk

〈
x,e j

〉2 ≤ l−1
k

}
.

Proof. Suppose H is a real separable Hilbert space (all the following steps
can be reproduced for a complex separable Hilbert space). The sequence
(en) induces an isometric isomorphism H → `2(R) via

x ∈ H 7−→ (〈x,e1〉,〈x,e2〉, . . .).

We can therefore write x = (x1, x2, . . .), where x j =
〈

x,e j
〉

.
Since K is in particular a metric space, showing its compactness is equiva-
lent to showing that it is complete and totally bounded (Munkres 2000,
Theorem 45.1). Recall that a metric space (M ,d) is totally bounded if, for
every ε> 0, there exists a finite covering of M by ε-balls. This means that
there exists a subset Fε ⊂ M such that

for any point of m ∈ M , there is a point p ∈ Fε with d(m, p) < ε. (C.2.2)

The set Fε is called a (finite) ε-net of M .
First notice that K is complete since it is a closed subset of H . Let us show
that is totally bounded. Fix ε> 0, and let k be the smallest integer such
that l−1

k < ε2/2. Let

Hk = {
(x1, x2, . . .) ∈ H : x j = 0 for j > k

}
.

Since the set
Hk (l−1/2

1 ) = {
x ∈ Hk : ‖x‖2 < l−1/2

1

}
is compact, it is totally bounded, and there exists a finite εp

2
-net F of
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Hk (l−1/2
1 ). Let us show that F is a (finite) ε-net of K . Let x = (x1, x2, . . .) ∈ K ,

Pk : H → H denote the orthogonal projection onto Hk , and I : H → I be
the identity operator on H . Notice that

Pk (K ) ⊂ Pk (B1) = Hk (l−1/2
1 ),

hence there exists a point p ∈ F such that
∥∥Pk x −p

∥∥2
2 < ε2

2 . Notice also

that ‖(I −Pk )x‖2
2 < l−1

k < ε2

2 by definition of Bk . Hence

∥∥x −p
∥∥2

2 =
∥∥Pk (x −p)

∥∥2
2 +

∥∥(I −Pk )(x −p)
∥∥2

2 =
∥∥Pk x −p

∥∥2
2 +‖(I −Pk )x‖2

2,

since p ∈ Hk . We thus have
∥∥x −p

∥∥
2 < ε, and K is compact.

The following Lemma gives necessary conditions for tightness of a se-
quence of random elements in a separable Hilbert space. It collects ideas
found in Bosq (2000, Theorem 2.7). We note that it is slightly weaker than
Panaretos & Tavakoli (2013b, Lemma 7.1).

Lemma C.2.3 (Criterion for tightness in Hilbert Space). Let H be a (real
or complex) separable Hilbert Space, and XT : ω→ H , T = 1,2, . . . be a
sequence of random variables. If for some fixed orthonormal basis (en)n≥1

of H, and some T ′ > 1, we have

1. sup
T>T ′

E‖XT ‖2 <∞

2. lim
n→∞ sup

T>T ′

∑
j≥n

E
∣∣〈XT ,e j

〉∣∣2 = 0,

then (XT ) is tight.

Proof. Fix ε > 0. We shall define a compact set K ⊂ H such that P(XT 6∈
K ) ≤ ε, for all T > T ′. This will show that XT is tight.

Set Sn = supT>T ′
∑

j≥n E |
〈

XT ,e j
〉|2. By assumption, S1 <∞ and

lim
n→∞Sn = 0.

Set n1 = 1, and l1 = ε/(2S1). We then define lk = kl1 and choose integers
1 < n2 < n3 < ·· · such that

Snk ≤
S1

k2k−1
.

Define Bk =
{

x ∈ H :
∑∞

j=nk

〈
x,ϕ j

〉2 ≤ l−1
k

}
, and K = ⋂∞

k=1 Bk , which is

compact by Lemma C.2.2. Using successively the union bound and
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Markov’s inequality, we obtain, for all T > T ′,

P [XT 6∈ K ] ≤
∑
k≥1

P

[ ∑
j≥nk

∣∣〈XT ,e j
〉∣∣2 ≥ l−1

k

]
≤∑

k
lk

∑
j≥nk

E
∣∣〈XT ,e j

〉∣∣2

≤∑
k

lk Snk ≤
∑
k

ε

2k
= ε.
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